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Abstract—This work aims at the control of nonlinear oscil­
lations in a multibody dynamics composed by a moored buoy
and a gimbal­beacon system that can swing like a physical
pendulum restrained to a planar motion on a moving plane.
We define a control objective based on parametric resonance on
the pendulum employing a sliding mass in the underside of the
rod. Additionally we analyze the mechanical energy transference
on the pendulum oscillation due to buoy motions like tilts and
yaw motion. The control performance in the presence of buoy­
induced perturbations on the controlled oscillations stays as the
main issue of the paper.
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I. INTRODUCTION

Nondamping oscillations are present in various physical

systems. Particularly physical, simple pendulums as well

as pendulum­like oscillating systems are found as compo­

nents in many engineering systems with oscillatory elements,

cranes transporting goods, tower crane, quadrotors with sus­

pended load, robotics, robotic walking, fluid in containers,

autonomous aerial vehicles, among other things, [2], [3].

Often, undesired oscillations are subject to control with the

end of effectively damping or completely suppressing them.

Nondamping oscillations can be energized or de­energized

with a periodic variation of some system parameter to which

the system motion is sensitive. This occurs with periodic

changes of this parameters and the system dynamics manifests

the phenomenon of parametric resonance. For instance a

mass­spring system with periodic modulation (exactly twice

the system natural frequency) of the elastic coefficient, it

manifests a progressively increasing oscillation. This simple

system is modelled by the fundamental differential equation

of Mathieu­Hill. For small amplitudes one can apply the

Theory of Floquet for linear and periodic­varying dynamics
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(Berkey, 1976). Also almost periodic nonlinear oscillation can

be simply be approximated by arithmetic­geometric mean [1].

Also a simplified representation of the perturbed pendulum

dynamic leads to bifurcations of Duffing equation included

strange attractors. In [9] the harmonic modification of the

pivot in a pendulum gives rise to chaotic dynamics. Also the

appearance of bifurcations in the nonlinear dynamics is studied

in [2] when the system is excited with periodic displacements

of the pivot and is reflected in Poincaré maps.

The control of the forced nonlinear oscillations in pendulum

systems has been investigated extensively. The most wide­

spread principle of control of a pending weight in tower cranes

is based on displacements of the pivot (both horizontally or

vertical) with information of the pendulum angle and mass

position [3]. In [4] damped oscillations are obtained by de­

creasing the mass at a constant rate. A real­time time­optimal

control problem for a cart­and­pendulum system is considered

in [5]. In [7] the parametric resonance was leveraged to damp

induced nonlinear oscillations by shifting a mass across the

rod in accordance to certain cinematic rules.

In this paper, we analyze a pendulum­gimbal system like in

[6] which is mounted on a oceanographic buoy. Moored buoy

dynamics is extensively studied, see for instance [8]. They

are used extensively in access channels to safely guide traffic

of ships to and from ports. Beacons mounted at the top of

buoys generally emit a sequence of light flashes or acoustic

and eventually electromagnetic signals in order to alert for a

geographic position and/or possible dangerous obstacles or to

indicate limits of sure depths.

When buoys are excited by currents, wind and waves

they may experiment a wide irregular behavior, so that un­

der circumstances, signalization sequences may be received

corruptly by the ship. Specially visual and acoustic signals

are programmed to give pulses at regular periods subject to

specific codes. Also for regular waves, the forced motion

of the a moored buoy may be characterized by complex

bifurcated behaviors such as oscillations with long periods or

chaotic displacements and inclinations. In all these cases the
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partial loss of visual signals is a potential source of bad ship

maneuvers that puts at stake the navigation.

In this problematic we will focus on an experimental beacon

device illustrated in Fig. 1 in the framework of control

dynamics with perturbations. The control problem herein is

to damp the oscillations of the beacon induced by the moored

buoy movements when it is excited by waves. The goal is, in

broad outlines, to keep the beacon as vertically as possible so

as it can be observed from the distance without discontinuity.

Clearly, to achieve this end the beacon can be not fixed to

the buoy but instead on a gimbal which has two degrees

of freedom of rotational modes and another degree for axial

movements along the rod.

The device will attempt to reduce the oscillations by

properly sliding a mass on the underside of the rod up and

down. Control strategies are described in [7] and employ the

effect of the parametric resonance in order to suck the energy

of the pendulum oscillation gradually.

Figure 1 ­ Wave­excited buoy with an embedded gimbal

system for beacon signalization

For the analysis we chose three coordinate frames, first

a world­fixed frame coordinates X0Y0Z0 with center at O,
which is the pendulum pivot, then a buoy­fixed frame XY Z
also with center onO and a third frame xyz fixed to the gimbal

with the same center O.
The beacon is rigidly installed at the top of the rod in

opposition to the mass which lies on its underside. The mass

distribution meets a design condition that the mass center of

the divice lies well below O. The pendulum pivot holds on a

bushing at O and the turn physical axis is coincident with x
and rests on a ball bearing whose motion is a spin about z.
The main typical turn motions of the buoy are pitch, roll

and yaw, while the movements of the device are the spin about

z, the swing about x and the mass slide zL along the rod (see

Fig. 1).

A characteristic of the assembly is that the axes Z and z
are always coincident what it does not mean that both may

have the same turn. Another particularity is that the rod can

freely swing only in the plane yz about x and this plane can

also rotate about z when the buoy motion or inner dynamic

moments generate a moment about z which drives the bearing

balls to roll. Certainly, these moments can be generated either

directly by buoy yaw motions or also by buoy tilts (nutations)

which indirectly induce relatively strong gyroscopic moments

about z. Likewise, buoy­generated moments about x drag the

bushing axis to turn and this way forcing the pendulum to

swing.

The way the buoy transfer energy to the device depends

on static and kinematic rolling moments at the bearing and

bushing. If for instance the static rolling resistance of the

bearing is not overcome by all moments applied about z, then
the device is dragged by the buoy movement with the same

buoy yaw rate. On the contrary, when the static moment is

exceeded, the device drag, even when it keeps on existing,

decreases dramatically, releasing the device to move with its

own dynamics. Moreover, the buoy tilts strictly impose device

nutations. Thus the device dynamics in this mode is completely

suppressed and determined by the buoy tilts as we will shown

thereafter.

Buoy­induced perturbations acting on the device dynamics

constrain the performance of the control system in an intricate

way that we will make more transparent. This is one of the

matters of this paper.

Buoy and device have interactuating dynamics as every

multibody system. A particularity of this conjunction is that

the buoy mass is much greater than the device mass, so

the movements of the buoy forces the movements of the

device system without reciprocity. Moreover, it is known that

moored buoys may behave in a complex manner under sea

wave excitations, even in the case of simple harmonic waves,

wherein long­periods movements and chaotic responses may

occur frequently. Thus, the device may be excited in an

unpredictable way.

The paper is organized as follows. First a summary of the

system in the swing plane yz along with the basic control and

a more sophisticated adaptive control based on knowledge are

presented. Further on, we deduce the dynamics of the system

in the rotation modes and interpret the relations about forced

motion and induced gyroscopic moments. We will assess the

nonlinear dynamics of the gimbal system and its potential to

attenuate complex perturbations on the controlled pendulum.

Finally, simulation a comparison of control performance is

made between the control approaches and the system behavior

without control.

II. CONTROL OF OSCILLATIONS

A. Basic control
The dynamics of this device system on the plane xy is

(Jordan and Bonitatibus, 2005)

α̈ = −
1

Ib + I0 + Im +mz2L(t)

�
δaα̇+ g sinα(1−

d(t)

L0
)

(1)
(LbMb/2 + L0M0/2 +mzL(t)) + 2mα̇zL(t)żL(t)

�
,

where α is the rod angle, zL the sliding mass distance from

O along the rod, d is the pivot displacement, Ib and I0 are

the inertia moments of the rod and beacon respectively with

respect to rotation axis, L0 the rod length, Lb the beacon

length, m the sliding mass, M0 the rod mass, Mb the beacon

mass, g the gravity acceleration, δa a friction coefficient due to

air, α̇ and żL are rates of the oscillation and the slide velocity,

respectively. For control purposes let us define zL(t) as the

control action and d(t) as the pivot perturbation due to a buoy

translation on the plane yz.
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The basic control algorithm works in the following way

(Jordan and Bonitatibus, 2005). During a complete period of

the pendulum oscillation, the sliding mass motion is synchro­

nized to ascend and descend two times completing a cycle.

In the basic control strategy, the mass descends when the rod

is at one of its maximal inclination and ascends when the

rod is passing by the vertical line in one or other direction.

The synchronization of the complete control cycle occurs at

4 time points, referred to as t1 up to t4. One pair (t1 and t3)
corresponds to the instants when the mass begins its descents

(twice per cycle), and the other pair (t2 and t4) when the mass

begins its ascents (twice per cycle).

By leading the mass in the other direction, the pendulum

will be excited instead and gains energy. This is an unstable

control (cf., parametric resonance). Mathematically, the basic

control law is





z
L
(t) = z

L1
+
� t2
t1
v(t) dt, from t1 up to t2,

where t1, t2 fulfill: α̇(t1) = 0 and z
L
(t2) = zL0

z
L
(t) = z

L0
−
� t4
t3
v(t) dt, from t3 up to t4,

where t3, t4 fulfill: α(t3) = 0 and z
L
(t4) = zL1

z
L
(t) = constant from t2 to t3 and from t4 to t1 .

(2)

There exist complex relations between the values of the

control parameter set {z
L0
, z

L1
,
z
L0
+z

L1

2
, v, d} and the syn­

chronism of the control system, it is the set {t1, t2, t3, t4}. The
relations simplify when d ≡ 0 at any t. For instance, given a

span and a midpoint of it, there exists a critical sliding velocity

to maintain the synchronism. This is defined indirectly by

t2­t1 =
z
L0
­z

L1

v̄
≤
Tc
4

and t4­t3 =
z
L0
­z

L1

v̄
≤
Tc
4
, (3)

where Tc is the period of the controlled oscillation and v̄ the

mean mass velocity which is considered equal in both ascent

and descent.

An outstanding feature of this synchronization is that the

frequency of the mass motion in a cycle is twice the frequency

of the oscillation.

There are many ways by which the basic control law can be

optimized in the sense that the loss of mechanical energy per

cycle is maximal. This is accomplished if the areas enclosed by

the mass path in each cycle are maximized. More precisely for

a given pair of levels z
L0

and z
L1

the control law is optimized

according to

max�
t1,t3,zL0

,z
L1

�

�

y­z

sign(α) A((zL, v) ds (4)

where the integral is the Green integral along the path x(t)­
z(t) and A is the area enclosed. Hence an optimal set	
t1, t3, zL0 , zL1



is found according to the provided v and

taking into account conditions (3). The implementation of the

optimization (3) is not really feasible because the optimal

switching time points change with wave frequency.

A much more practical way to influence to some extent the

speed of the energy leakage per cycle is a control strategy

based on knowledge. By way of example we will illustrate

this control strategy employing the pivot frequency of the

excitation as the main dimension with mass range and mass

velocity as codimensions.

B. Knowledge­based control

As in many mechanical nonlinear systems, the pendulum

system subject to an harmonic perturbation of the pivot, may

set off bifurcations, quasi­periodic or chaotic oscillations.

One of the most useful results of the previous work in [6] are

depicted in spectrum of the controlled variable of the sliding

mass like in Fig. 2. Herein, the powers (labelled as P0) of

the spectra of the induced swing motion in steady state for a

wave of frequency ω0 were obtained.

Figure 2 ­ Pendulum spectrum energy and bifurcations for

variable velocity to pull up and down of the mass

Moreover, large periods in the oscillation are obtained using

expansion in a Fourier series. The occurrence of subharmonics

are indicated with point bars for two specific parameter in the

codimensions, namely the range of the sliding interval and the

speed to pull up and down the mass along the rod.

First, the uncontrolled swing with static mass at the under­

side of the rod leads to large forced oscillations. It is noticing

that a variation of the range or of the mass speed will produce a

significant reduction of the power of the swing. Furthermore,

the presence of large periods like P2, P3, P4 and chaotic

response are common in all cases when the mass is driven.

For instance, keeping the mass interval fixed and changing

the speed the zone of minimum powered highlighted in the

figure yield significantly reduced.

The zone of minimum power highlighted in the figure yields

significantly reduced.

Herein it is seen that bifurcation phenomena are common for

lower as for higher frequencies. Additionally, one notes that

there is a split frequency ω0 = 0.46Hz wherein low speeds

are more profitable than higher speeds for ω < 0.46Hz. On
the contrary, for higher frequencies, the situation is inverted,

i.e., a high rate produces a more efficient power reduction of

the controlled swing.

In broad outlines, based on this knowledge, the best way to

maintain the energy of the orbit as low as possible is to regulate

the mass rate appropriately. Accordingly, the frequency ωc =
0.46 (Hz) is chosen as the critical frequency for switching rates
to obtained optimal properties of the control performance.

The switching control obtains permanently information of

the fundamental frequency ω0 via FFT and identify it on small

periods of the evolution of α(t) to finally detect the crossing

point about ωc = 0.46Hz. The results have shown a drastic

reduction of the energy of the oscillation in comparison with
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previous cases without switching.

We are stating now, that the pendulum dynamics may be­

come much more complex when mechanical energy is allowed

to input the system in other cross modes of oscillations whilst

the described planar controls are working. This is the matter

of the next section.

III. CONTROL DYNAMICS WITH PERTURBATION

We think henceforth in a pendulum­gimbal system mounted

at the top of a buoy like in Fig. 1, which is excited by a sea

wave actuating on some unknown direction with respect to the

x axis.

Henceforth for the analysis, the notation for vectors is in

bold text and for scalars in normal text. Besides, subindices

in lowercase letter are referred to a rotating frame and in

uppercase letter to a buoy­fixed frame. Finally, derivatives of

temporal variables are represented using dots over them.

We postulate the angular velocity Ω as the vectorial sum

of the device spin φ̇ and the pitch θ̇ about Y . Similarly, we

define an angular velocity ω as the vectorial sum of the device

spin ψ̇ about z and the pendulum swing α̇ about x and the

nutation θ̇ about y. As the device has mass symmetry in the

x and y axes, but not with respect to z, Then we postulate a

rotating frame xyz
Both Ω and ω are represented by their projections in the

frame xyz. Additionally the directions of the frame xyz are

reflected in its unit vectors (i, j,k).
As x and z are t this stage, we can directly apply the theory

of Euler for the temporal change of the absolute momentum L

to the system and relate it to a total moment M both related

to (i, j,k).
To this end we have L̇ = d(Lxi + Lyj + Lzk)/dt. Since

(Lx, Ly,Lz) = (Ixωx, Iyωy, Izωz) and di/dt = Ω × i,

dj/dt = Ω× j and dk/dt = Ω× k. Thus

Mx = Ixω̇x − IyΩzωy + IzΩyωz + İxωx (5)

My = Iyω̇y − IzΩxωz + IxΩzωx + İyωy (6)

Mz = Izω̇z − IxΩyωx + IyΩxωy, (7)

where İx and İy in (5)­(6) correspond to derivatives of

the time­varying inertia moments owing to the sliding mass

motion. Taking into account the mass position −zL in (2), it

holds in accordance to (1)

Ix = Ib + I0 + Im +m z2L (8)

Iy = Ib + I0 + Im +m z2L (9)

İx = İy = 2m zL żL. (10)

Moreover, from the definition of Ω and ω it follows after

some intrincate deductions

Ω = −φ̇ sin θ i+ θ̇ j+ φ̇ cos θ k (11)

ω = (α̇− φ̇ sin θ) i+ θ̇ j+ φ̇ cos θ k (12)

We consider the external moment M as the one generated

by the buoy motion, namely the moment about Z designated

as MZ and tilt moments MX and MY about X and Y , re­
spectively. Their projections in the frame xyz are the external

moment components

Mex =MX cos (φ− φb) cos θ +MY sin (φ− φb) cos θ−

−MZ sin θ (13)

Mey = −MX sin (φ− φb) +MY cos (φ− φb) (14)

Mez =MX cos (φ− φb) sin θ+MY sin (φ− φb) sin θ+

+MZ cos θ. (15)

where φb is the buoy yaw motion. It is worth noticing that

Mez is resisted by the friction on the bearing, which can drag

the conjunction to follow the buoy rotation.

The external moments include beyond the applied moments,

also friction moments at the ball bearing seats and bushing

axis, along with the weight of the beacon­rod­mass. Its com­

ponents in the xyz frame are

Mx=Mex− δaωx+Mbu− (w0+mzL)g sinα cos θ (16)

My=Mey− δaωy+Rbu− (w0+mzL)g cosα sin θ (17)

Mz=Mez−δazωz+Mbe−(w0 +mzL)g sinα sin θ (18)

where Rbu is the reaction moment of the bushing to a any mo­

ment about y which precludes any possibility of the pendulum

rotation as a spherical pendulum, w0 = M0L0/2−MbLb/2,
δa is a friction coefficient due to air resistance in the rod, mass

and beacon which is assumed to have approximately the same

value because of the similar effective area of the pendulum for

rotations about x, y and z,Mbu is a friction resistance moment

about x at the bushing andMbe is a rolling resistance moment

about Z at the bearing.

Both, friction moments provide in general a relatively low

resistance because they involve a type of lubricated fric­

tion.However, by rather slow motions this kind of friction

may increase substantially. Moreover, both resistance moments

are proportional each one to normal forces aligned with z for

the bearing and the direction of the rod for the bushing. The

moments about x and z will force the bushing and ball bearing

to rotate inasmuch as their modules do not exceed constant

moments due to static friction. From there on, the friction

diminishes drastically until it is limited by much more small

moments owing to the low kinetic friction.

Accordingly, the friction on the bushing causes the moment

Mbu which can be expressed in an IF­conditional form as

IF Mbu0>
|Mex − Ixω̇x + IyΩzωy − IzΩyωz − İxω−

−δaωx − (w0 +mzL)g sinα cos θ|

AND |α̇| ≤ εα̇ THEN Mex = −Mbu (19)

ELSE Mbu= −δbunrr sgn(α̇) ENDIF

where Mbu0 is the modulus of the friction moment due to the

static friction at the bushing, εα̇ represents an upper bound

for delimiting slow motion of α̇, δbu a dimensionless friction

coefficient of the bushing, nr the normal force on the bushing

in the direction of the rod and r is the radius of its axis.

Taken into account the weights of the rod, beacon and mass,

and their centrifugal forces, the resulting force along the rod

is calculated through the second derivative of their position

vectors. The unit vector along the rod is

r=(sinα sinφ+ cosα sin θ cosφ) i+ (20)

+(sinα cosφ− cosα sin θ sinφ) j+ cosα cos θ k,
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and all forces acting in this direction, namely centripetal force

and projected weights, determine nr. Thus

nr = (M0 +Mb +m)g cosα cos θ − (w0 +mzL)r.̈r (21)

with the dot between vectors meaning the scalar product.

Similarly, the friction on the bearing causes the moment Mbe

which is accounted for by

IF Mbe0 > |Mez − Izω̇z + IxΩyωx − IyΩxωy−

−δaωz − (w0 +mzL)g sinα sin θ| (22)

THEN φ=φ(t1)+φb, φ̇=φ̇b=0, φ̈=φ̈b=0 AND fbe = 1

ELSE Mbe= −δbenzR sgn(φ̇) AND fbe = 0 ENDIF

where fbe is binary variable state of the friction at bearing,

meaning static when fbe = 1 and cinematic when fbe = 0,
t1 is the instant when fbe changes from 0 to 1, Mbe0 is the

modulus of the reaction moment due to static friction which

resists the inertia moment about Z, δbe is a dimensionless

rolling resistance coefficient of the bearing balls, nz the normal

force on the ball bearing in the direction z and R is the

radius of either of them. As we will see further down, the

third sentence of the IF­condition will imply simply that the

buoy motion impose completely the bearing seat position and

angular rate.

Moreover nz is represented by

nz = (M0 +Mb +m)g cos θ− cosα(w0 +mzL)r.̈r (23)

On account of the enormous disproportion between masses

of the buoy and gimbal­pendulum system, it is remarked that

any tilt of the buoy will force the system in a nutation θ.

Another remark is related to physical aspects of the bushing

at the pivot which represents an holonomic restraint which

blocks any movement of the sliding mass out of the motion

plane yz. On one side, this restraint is already considered in

the orthogonality between α̇ and θ̇. On the other side this

restraint imposes that the moment My is entirely resisted by a

bushing reaction moment. In consequence the pendulum can

not oscillate like a spherical pendulum and the nutation of the

gimbal is caused by buoy tilts only but not by the inherent

dynamics of the device gimbal­pendulum self.

As a result, the ODE (6) for the absolute change of the

angular momentum in the j direction is cancelled and the

expression (14) of the external moment Mey is replaced by

θ̇ = −θ̇X sin (φ− φb) + θ̇Y cos (φ− φb) , (24)

where θ̇X and θ̇Y are the buoy tilts about X and Y , respec­
tively, which have their maximal effect on the gimbal when

φ = 3/4π + iπ with i = 0, 1, 2....

Considering the dynamics equations (5)­(7) with the expres­

sions for the inertia moments (8)­(9) and their derivatives (10),

the angular velocities (11)­(12), the buoy­induced perturbation

moments (13)­(15), the resistance moments with their normals

(22)­(23) and (19)­(21), and finally the total moment compo­

nents in (16)­(18) with the expressions for air friction moment

and pendulum weight and equation (24) with the attached

remarks, one can draw out the following complete ODEs of

the system dynamics

Mex = Ix(α̈− φ̈ sin θ − φ̇θ̇ cos θ)− Iyφ̇θ̇ cos(θ)+ (25)

+Izφ̇θ̇ cos θ+ 2m zLżL(α̇− φ̇ sin θ) + δa(α̇−

−φ̇ sin θ)−Mbu + (w0 +mzL)g sinα cos θ

IF fbe = 0 THEN

Mez = Iz(φ̈ cos θ − φ̇θ̇ sin θ)− Ixθ̇(α̇− φ̇ sin θ)− (26)

−Iyφ̇θ̇ sin θ + δaφ̇ cos θ−Mbe + (w0+

+mzL)g sin θ sinα with IC: φ(t0) and φ̇(t0)

ELSE φ = φ(t1) +

� t

0

φ̇bdτ , φ̇=φ̇b and φ̈=φ̈b ENDIF (27)

where t0 is the instant when fbe changes to 0, t1 is the instant
when fbe changes to 1 and IC means initial conditions. It is

remarking that the condition (22) is always being assessed

from (26), nevertheless whether φ is generated by the ODE

(22) or calculated from (27).

The ODE systems (25)­(26) or (25)­(27) are accounted for

by the rotational behavior of the system dynamics, wherein

the momentsMex and Mez and the angles φb and θX and θY
are external perturbations which are specified in our study as

temporal functions emulating the buoy behavior with harmonic

either long­periodic cycling as well as chaotic motions.

Besides zL contains the control action onto the plane yz
given by the basic law (2) or a more sophisticated law like for

a knowledge­based control.

As seen in our approach, the control performance is aimed

to assess only perturbation moments about O without displace­

ments of that point. Indeed, this study pursues the isolation

of rotations in every mode that ultimately will submit the

controlled system to interactive oscillations like pendulum

swing with buoy­induced excitation. This will, in turn, allow us

to understand better the role played by gyroscopic forces and

the ability of the device to counterbalance control performance

and disturbance rejection.

IV. CASE STUDY

In the following, some selected simulations are portrayed

aiming to illustrate the main outcomes of this study. Results re­

garding the controlled and uncontrolled cases (with acronyms

CC and UC, respectively) are contrasted in the same figure. We

illustrates the basic control algorithm along with the estimation

of the fundamental wave frequency to optimally regulate the

sliding interval and mass speed.

General settings are: l = 1m, m = 0.5kg, R = 0.003m
and r = 0.003m, δax = δay = 0.01Nms/rad, δaz =
0.001Nms/rad, δbe = 0.0025Nms/rad, δbu = 0.1, εα̇ =
0.02rad/s, Mbe0 = 0.00001Nm, Mbu0 = 0.07Nm, α(0) =
45◦, zL(0) = 1m. Buoy­induced and external moments along

with buoy tilts are indicated in the figures.

Fig. 3 reproduces the CC and UC when the wave is exciting

the buoy in stationary state along y causing a continuous

pendulum swing by dragging on the bushing axis on account of

the static and kinetic friction moments. A while later, a strong

pulsating rotation of the buoy about Z changes the orientation

of the oscillation plane yz in both directions. However the

swing motion results unperturbed by this turn because there

is not any buoy tilt. The controlled swing behavior seems to



6

be much more damped in the transient than the uncontrolled

case, and much softened in permanent state.

Figure 3 ­ Case study 1: Perturbation of the beacon­gimbal

system through buoy yaw and pitch motions

Fig 4. illustrates the complex scenario wherein a wave

induces a pendulum swing through a buoy pitch and si­

multaneously changing buoy tilts affect the orientation of

the motion plane yz. It is noticed that the control behavior

is strongly affected by generated gyroscopic moments Mez

which produced many complete yaw rotations of the buoy.

The buoy tilts create three pseudo­moments about z in (26),

namely −Izφ̇θ̇ sin θ, −Ixθ̇(α̇ − φ̇ sin θ), −Iyφ̇θ̇ sin θ, which
are null when θ = 0. Even though the control seems to have

comparable response as in the UC, this can reach a superior

performance when the pseudo moments remain smooth due to

a small φ̇.

Figure 4 ­ Case study 1: Perturbation of the beacon­gimbal

system through buoy roll and pitch motions

V. CONCLUSIONS

Based on previous works of the authors associated to an

optimal oscillation control on a plane with knowledge­based

parameter settings, this paper attempts to analyze eventual

drops in the control performance under a wide spectrum

of complex disturbances. Here the work has dealt with an

holonomic­constrained control of a pendulum in a 3D space

owing to its particular design. The controlled system is pre­

sented as a stabilized beacon­gimbal­mass device of three DOF

mounted on a buoy for port signalization. It manipulates the

position of a sliding mass on the rod extreme employing a

parametric resonance effect to attenuate the oscillations. The

general dynamics of this multibody is described wherein the

buoy movements are assumed as perturbations of the device.

In broad outlines, the performance is outstanding when

the motion plane of the pendulum is aligned with the wave

direction. By pure yaw rotations of the buoy the control

performance is barely influenced. Here, a tilt of the buoy

aligned with the wave direction does not affect the control.

This situation can dramatically change when tilts of the

buoy appear in different directions because they may induce

strong gyroscopic moments that jeopardize the control end. As

the device can not be aligned by self according to the wave

direction, buoy tilts can produce many turns of the device

about the vertical axis. Nevertheless the by­control damping

of the oscillations are more effective in the CC than in the

UC.

Some selected simulations attempt to illustrate the perfor­

mance of our the oscillation control.
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