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Abstract
In this paper the synthesis of adaptive control law for

thermal power plant with input delay with a step-by-
step changing dynamics is considered. The plant oper-
ates under conditions of a priori parametric and struc-
tural uncertainties when measuring only output signal.
The structure of control system with an implicit refer-
ence model includes a predictor-compensator, command
and output correction filters.
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1 Introduction
Thermal engineering is one of the industries where

all stages of heat and electrical energy production are
subject for automation. However, the problem of de-
signing the effective automated control systems for heat
and power facilities remains quite acute, for which the
following are typical: complex dynamics of the con-
trol plant, changes in the parameters and structure of
such systems, various types of delays, etc. [Eremin and
Telichenko, 2009]. All these problems become much
more critical if one takes into account the fact that a
significant part of enterprises engaged in the produc-
tion of heat and electricity operate on coal raw materi-
als and may have a non-block structure [Pletnev, 2007],

which entails great difficulties both in the analysis and
in the construction of control systems for such plants
[Eremin and Telichenko, 2009; Pletnev, 2007; Klyuev,
Lebedev and Novikov, 1985; Rotach, Kuzishchin and
Petrov, 2010; Smetana, 2009; Smirnov, Sabanin and Re-
pin, 2007; Pikina, Kocharovsky, 2006].

As the control plant we discuss the pressure control
system in the common steam line of the cogeneration
station with cross-links [Eremin and Telichenko, 2011].
The main task of the considered pressure control loop
is to ensure the required operating mode of the turbine
units, regardless of their load, by changing the load on
the boilers. The structure considered in the paper is
not the only one [Pletnev, 2007], however, at coal-fired
power plants with a common steam line it is a kind
of standard. When solving the problem of obtaining a
mathematical description for control loop, one should
note its nontriviality: on the one hand, the control plant
is, in fact, a generalized boiler model, which is diffi-
cult to describe in the form of simple dynamic links;
on the other hand, using the Supervisory Control And
Data Acquisition (SCADA) systems, it is possible to
construct the dynamics of all possible control sections
for sufficiently long time interval [Kositsin, Rybalev and
Telichenko, 2013].

In the modern automatic control theory, the devel-
opment of controllers based on analytical methods for
control systems with delay and step-by-step changing
dynamics is an urgent task. Changing dynamics is
a characteristic for energy, mechanical, and chemical
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plants. Each of the control systems for such plants
consists of a set of switched subsystems and switch-
ing law that determines the activity of the subsystem
in a certain period of time [Aleksandrov and Platonov,
2008; Barseghian, 2002; Barseghian, 2012; Benzaouia,
2012; Chiou et. al., 2010; Daafouz et. al., 2002; Garcı́a-
Planas, 2020; Gorodetsky, Skobelev and Marik, 2020;
Tsykunov, 2017]. In the present paper an adaptive con-
trol algorithm for plant with input delay is obtained. Au-
thors take into account the switching of the parameters
and the relative order of plant, i.e. the considered control
plant is priori parametrically and structurally uncertain.

2 Mathematical Model of the Control System
We consider a priory parametrically and structurally

uncertain plant with control delay. The dynamics of the
plant changes Q times at the time intervals 0 = t0 <
t1 < ... < tQ. In operator form the considered plant
model can be written like

a(q)(p)y(q)(t) = b(q)(p)uq(t− h),

piy(1)(0) = yi0, u
(1)(θ) = φ(θ), θ ∈ [−h; 0] ,

(1)

where q = 1, 2, ..., Q is the number of time intervals
(tq−t(q−1)); y(q)(t) is the composite output of the plant;
u(q)(t) is the composite control signal; h is known con-
stant time delay.

The plant (1) operates under following conditions:

1. a(q)(p) and b(q)(p) are normalized polynomials,
deg a(q)(p) = nq , deg b(q)(p) = mq , p = d/dt is
the differentiation operator; b(q) are Hurwitz poly-
nomials, a(q) are polynomials with arbitrary roots;

2. the plant (1) is parametrically uncertain, coefficients
of polynomials a(q)(p) are b(q)(p) are unknown
numbers which depends on a set of unknown pa-
rameters ξ belonging to know bounded set Ξ;

3. the plant (1) is structurally uncertain, polynomials
a(q)(p), b(q)(p) degrees nq and mq are unknown
numbers but maximum degree p of polynomials
a(q)(p) and constant relative order ρ > 1 both
known;

4. only scalar output y(q)(t) of the plant (1) is available
for the direct measurement.

To eliminate structural uncertainty, we use the ap-
proach proposed in [Hodgson and Stoten, 1998]. We
write the equation of the plant dynamics(1) in the fol-
lowing equivalent form:

(p+ υ0)
(n−nq)a(q)(p)y(q)(t) =

= (p+ υ0)
(n−nq)b(q)(p)u(q)(t− h),

υ0 = const > 0, q = 1, ..., Q.

c(q)(p)y(q)(t) = L(q)(p)u(q)(t− h),

a(q)(p) (p+ υ0)
(n−nq) = c(q)(p) =

= pn + c(n−1)p
(n−1) + ...+ c1p+ c0,

(2)

b(q)(p) (p+ υ0)
(n−nq) = bqL

(q)(p) =

= bq(p
(n−ρ) + l(n−ρ−1)p

(n−ρ−1) + ...

+ l1p+ l0).

We can write the mathematical description of the
equivalent plant (2) in state-space form as following
composite system of differential equation:

dx(q)(t)

dt
= A(q)x(q)(t) +B(q)u(q)(t− h),

y(q)(t) =
(
L(q)

)T
x(q)(t),

(3)

where q = 1, 2, ..., Q; x(q)(t) =[
x
(q)
1 (t), x

(q)
2 (t), ..., x

(q)
n (t)

]T
is the composite vector

of state variables; A(q) are arbitrary state matrices in the
Frobenius form of n × n size; B(q) = [0, ..., 0, bq]

T are
vectors of n size; L(q) are constant vectors of (n − ρ)
size. We assume that trajectories between the systems
of equations (3) are joined: x(q+1)(tq) = x(q)(tq),
q = 1, 2, ..., Q− 1 .

Since the relative order of the plant (3) transfer func-
tions at each interval is greater than one we connect the
output filter-corrector (OFC) to output of the plant (3):

y
(q)
f (s) = WOFC(s)y

(q)(s) =

=

(
T0s+ 1

T∗s+ 1

)(ρ−1)

y(q)(s),
(4)

where y(q)f (t) is the output of the filter-corrector; T0, T∗
are time constants, T∗ is sufficiently small [Eremin,
2013; Eremin and Shelenok, 2018].

Serial connection of the plant (3) and the filter (4) we
can represent as serial connection of the modified con-
trol plant (MCP) and the block of structural perturbation
(BSP):

y
(q)
f (s) = W

(q)
MCP (s) ·W

(q)
BSP (s)e

−shu(q)(s) =

=
bqL̃

(q)(s)

c(q)(s)
· 1

(T∗s+ 1)(ρ−1)
e−shu(q)(s),

(5)

where L̃(q)(s) = L(q)(s) (T0s+ 1)
(ρ−1), deg L̃(q) =

(n− 1), L(q) is numerator of the plant (3) transfer func-
tion. Then the relative order of the MCP will be equal to
one (ρ(q)MCP = 1) at any functioning interval.

In accordance with [Eremin, 2013; Eremin and She-
lenok, 2018] we exclude the BSP from model (5) and
rewrite mathematical description of the MCP in state
space like
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dx(q)(t)

dt
= A(q)x(q)(t) +B(q)u(q)(t− h),

ỹ(q)(t) =
(
L̃(q)

)T
x(q)(t),

(6)

where y(q)(t) ∈ R is composite output signal of the
MCP.

To compensate the control delay we connect the
predictor-compensator [Eremin, Nikiforova, Pikul and
Telichenko, 2019] in parallel to the plant with following
mathematical model:

(p+ χ0q) y
(q)
k (t) = χ0q

(
u(q)(t)− u(q)(t− h)

)
,

piy
(1)
k (0) = 0, q = 1, ..., Q,

(7)

where χ0q = const > 0 is the parameter of the
predictor-compensator.

In accordance with the methodology of synthe-
sis we extend the state space of the predictor-
corrector (7) using the Hurwitz polynomial L̃(q)(p) =

L(q)(p) (T0p+ 1)
(ρ−1) of (n− 1) degree:

L̃(q)(p) (p+ χ0q) y
(q)
k (t) =

= χ0qL̃
(q)(p)

(
u(q)(t)− u(q)(t− h)

)
.

Then this equation we can rewrite in the state space like:

dx
(q)
k (t)

dt
= A

(q)
∗ x

(q)
k (t) +B

(q)
∗ (u(q)(t)−

−u(q)(t− h)), y
(q)
k (t) =

(
L̃(q)

)T
x
(q)
k (t),

(8)

where q = 1, ..., Q, x
(q)
k (t) =[

x
(q)
k1 (t), x

(q)
k2 (t), ..., x

(q)
kn (t)

]T
is the states compos-

ite vector of the predictor-compensator; A
(q)
∗ are

Hurwitz matrices in the Frobenius form of (n× n) size;
B

(q)
∗ = [0, ..., 0, χ0q]

T are vectors of n size; y(q)k (t) ∈ R
is the composite output.

The relative order of the predictor-corrector (8) trans-
fer functions at each time interval is equal to one

y
(q)
k (s) = W

(q)
PC(s)

(
1− e−sh

)
u(q)(s) =

=
(
L̃(q)

)T (
sE −A

(q)
∗

)−1

B∗
(
1− e−sh

)
×

× u(q)(s) =
χ0qL̃

(q)(s)

(s+ χ0q) L̃(q)(s)

(
1− e−sh

)
×

× u(q)(s).

(9)

2.1 Problem Statement
The main goal of heat-and-power plant control is to

ensure the desired dynamics of outputs yq(t), which
consists in high-quality processing of the given signals
r(q)(t), i. e. in the fulfillment of the limit inequality

lim
t→∞

∣∣∣r(q)(t)− y(q)(t)
∣∣∣ ≤ δ0q, q = 1, ..., Q, (10)

where δ0q = const > 0 are required constant values.
For the main control loop we may get a view of the

command signals by analogy with ([Eremin, 2018]) with
the help of command filter-corrector (CFC)

r̃(q)(s) = WCFC(s)r
(q)(s) =

=

(
T0s+ 1

T∗s+ 1

)(ρ−1)

r(q)(s).
(11)

Then, for the modified control plant (6), operating in
structural-parametric uncertainty, the additional control
goal can be formulated as following. It is required to
synthesize the explicit form of control law

u(q)(t) = u

(
ỹ(q)(t), ỹ

(q)
k (t), r̃(q)(t),

u(q)(t− h)

)
, q = 1, ..., Q,

(12)

so that at measuring only variables y(q)(t) and any initial
conditions y(1)(0) the following inequality:

lim
t→∞

∣∣∣y(q)∗ (t)− ỹ(q)(t)
∣∣∣ ∼=

∼= lim
t→∞

∣∣∣r̃(q)(t)− ỹ(q)(t)
∣∣∣ ≤ δ1q,

q = 1, ..., Q,

(13)

where δ1q = const > 0 are maximum permissible errors
in steady state modes; y(q)∗ (t) are output variables of the
implicit reference model (IRM):

y
(q)
∗ (t) =

χ0q

p+ χ0q
r̃(q)(t). (14)

It is well known [Fradkov, 1974] that if χ0q ≫ 0, q =
1, ..., Q, then for (14) we can conclude following

y
(q)
∗ (t) ∼= r̃(q)(t). (15)

Thus, if it is possible to ensure the existence of addi-
tional conditions (13), then the main control goal (10)
also can be fulfilled due to the equivalence of the trans-
fer functions in equations (4), (11). It should be noted
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that for the mathematical model of the plant (6) we use
its equivalent analogue instead of IRM (14):

y
(q)
∗ (t) =

χ0q

(p+ χ0q)
· L̃

(q)(p)

L̃(q)(p)
r̃(q)(t),

which in the state space has the form like:

dx
(q)
∗ (t)

dt
= A

(q)
∗ x

(q)
∗ (t) +B

(q)
∗ r̃(q)(t),

y
(q)
∗ (t) =

(
L̃(q)

)T
x
(q)
∗ (t),

(16)

where q = 1, ..., Q; x
(q)
∗ (t) =[

xq
∗1(t), x

(q)
∗2 (t), ..., x

(q)
∗n (t)

]T
is the reference com-

posite state vector; y
(q)
∗ (t) ∈ R is the reference

composite output. Let for the reference model (16) and
the control plant (3) following conditions of structural
matching are satisfied:

A
(q)
∗ = A(q) − χ0qB∗L̃

(q),

B(q) = B
(q)
∗ (1 + k0q) ,

where χ0q = const > 0 is quite a large numbers; k0q =
const > 0, q = 1, ..., Q.

If inequality (13) is satisfied, due to the equality of the
transfer functions of the output (4) and command (11)
filter-correctors, the main control goal (10) with respect
to outputs of the control plant (1) will also be fulfilled.

3 Synthesis of the Adaptive Control Law
To determine the explicit form of the control law (13),

we use the hyperstability criterion ([Landau, Lozano,
and Saad, 1998]), following which we consider signals
e(q)(t) = x

(q)
∗ (t) −

(
x(q)(t)− x

(q)
k (t)

)
and equivalent

mathematical description of the system (1), (4), (7), (10),
(11):

de(q)(t)

dt
= A

(q)
∗ e(q)(t) +B

(q)
∗ µ(q)(t),

v(q)(t) = y
(q)
∗ (t)− ỹ(q)(t)− y

(q)
k (t),

µ(q)(t) = −u(q)(t) + r(t)−
− χ0q ỹ

(q)(t)− k0qu
(q)(t− h).

(17)

The requirement of the hyperstability criterion about
the strict positive definiteness of the real frequency re-
sponse of the linear part of system (17) can be written as
an inequality:

Re
[(

L̃(q)
)T (

jωE −A
(q)
∗

)−1

B
(q)
∗

]
> 0,

∀ω ≥ 0,

(18)

which always takes place on each time interval, since its
transfer function, taking into account (8), coincides with
the transfer function of the first-order aperiodic link:

W (q)(s) =
(
L̃(q)

)T (
sE −A

(q)
∗

)−1

B
(q)
∗ =

χ0q

s+ χ0q
.

The next requirement of the hyperstability criterion
concerns the nonlinear nonstationary part of the equiv-
alent system (17). Following ([Landau, Lozano, and
Saad, 1998]), it must satisfy the integral inequality

η(q)(0, t) = −
∫ t

0

µ(q)(θ)v(q)(θ)dθ > −η
(q)
0 ,

η
(q)
0 = const, ∀t > 0.

(19)

Substituting the nonlinear function µ(q)(t) from (16)
into (18), it is possible to determine following explicit
form of the control algorithm which ensure inequality
(20) satisfaction (see Appendix A):

u(t) = r(t) + h1ỹ
(q)(t)

∫ t

0

ỹ(q)(θ)v(q)(θ)dθ+

+ h2

(
ỹ(q)(t)

)2
v(q)(t)+

+ h3u
(q)(t− h)

∫ t

0

u(q)(θ − h)v(q)(θ)dθ,

(20)

where hi = const >), i = 1, 2, 3 are parameters of
the law (21) the values of which are selected during the
simulation.

By choosing a small parameter T∗, adaptive control
law (20) guarantees system (6), (8), (10), (20) its L-
dissipativity, and fulfillment of the control goal (13).
Due to the fact that the transfer functions of the com-
mand and output filter-correctors are coincide, the ful-
fillment of the control goal (13) implies fulfillment of
the control goal (15), i.e. system (1), (4), (7), (11), (20)
will be L-dissipative.

4 Simulation Results
We obtain the mathematical description of the control

plant according to practical data for boiler No. 1 of BKZ-
420-140-7 type of the Blagoveshchensk Cogeneration
Station. The plant has a classical structural uncertainty,
dictated by the following factors:

1. fuel parameters (humidity, calorific value, etc.),
operating modes of the boiler unit cannot be as-
sessed with the help of classical methods;



CYBERNETICS AND PHYSICS, VOL. 11, NO. 2, 2022 71

2. disturbances acting from other boilers, the length
of the steam line itself, operating modes of turbine
units are objectively structural disturbances for such
plant;

3. operating mode of the main regulator is not defined,
since for various reasons the control systems in-
cluded in its composition may be in different states
(for example, loading of mills regulator for mills A
and B in the automated mode; mills C and G in man-
ual control; which can be dictated by the task of en-
suring optimal combustion efficiency, since differ-
ent mills affect different front of burners and these
factors are a priori unknown).

By processing practically obtained data made it possi-
ble to obtain the following set of equations for the con-
trol plant object on the set of functioning states:

1. at the time interval 0 < t < t1 = 13000 (s):(
2102p2 + 2 · 210 · 0.2p+ 1

)
×

× (201p+ 1) y(1)(t) =

= 0.148 (p+ 1)u(1)(t− 116);

(21)

2. at time interval 13000 < t < t2 = 26000 (s):(
203.332p2 + 2 · 203.33 · 0.383p+ 1

)
×

× y(2)(t) = 0.209u(2)(t− 116);
(22)

3. at time interval 26000 < t < t3 = 38000 (s):(
2002p2 + 2 · 200 · 0.5p+ 1

)
×

× (100p+ 1) y(3)(t) =

= 0.187 (p+ 1)u(3)(t− 116).

(23)

In the course of simulation we studied the functioning
of the plant with following non zero initial conditions:
yi(0) = 1, i = 1, 2, 3; at the first time interval third or-
der plant (21) was considered, at the second time interval
second order plant (22) was considered, at the third time
interval third order plant (23) was considered.

Maximum degree of the considered thermal power
plant equals to 3, relative order equals to 2.

Transfer function of the CFC and OFC has the form as
follows:

WCFC(s) = WOFC(s) =
0.1s+ 1

0.001s+ 1
.

The command signals were:

r(1)(t) = 0.3

(
1 +

2

3
exp(−0.05t)− 5

3
exp(−0.02t)

)
,

r(2)(t) = 0.8

(
1 +

2

3
exp(−0.05(t− 13000))−

− 5

3
exp(−0.02(t− 13000))

)
,

r(3)(t) = −0.4

(
1 +

2

3
exp(−0.05(t− 26000))−

− 5

3
exp(−0.02(t− 26000))

)
.

Parameters of the predictor-compensator were: χ0q =
150.

After several stages of the system simulation the pa-
rameters of control law (20) were chosen like: h1 =
100, h2 = 200, h3 = 5. Simulation results are pre-
sented at Fig. 1 and 2.

Figure 1. Dynamic processes of the control system: solid line is out-
put of the control plant (1); dotted lone is the command signal r(q)(t)

Figure 2. Signal of the error between the plant output (1) and the
command signal r(q)(t)
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5 Conclusion
In the paper with the help of hyperstability criterion the

adaptive control law for thermal power plant with con-
trol delay and step-by-step changing dynamics is synthe-
sized. Considered plant functioning at priory parametric
and structural uncertainties. In course of simulation of
the obtained system values of the control errors in steady
state does not exceed 0.5%. This circumstance indicates
a quite enough operating quality of the control system.
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Proof of the integral inequality (19) fulfillment
Let us show that synthesis of the control law in the

form (20) allow us to fulfill the integral inequality (19).



CYBERNETICS AND PHYSICS, VOL. 11, NO. 2, 2022 73

The left part of the (19) respecting the form of µ(q)(t)
from equation (17) we can rewrite as follows:

η(q)(0, t) =

∫ t

0

(
u(q)(θ)− r̃(q)(θ)

)
v(q)(θ)dθ+

+ χ0q

∫ t

0

ỹ(q)(θ)v(q)(θ)dθ+

+ k0q

∫ t

0

u(q)(θ − h)v(q)(θ)dθ.

(24)

It is appropriate to describe difference signal(
u(q)(t)− r̃(q)(t)

)
as a sum

(
u
(q)
1 (t) + u

(q)
2 (t)

)
. Then

we have the signal like

u(q)(t) = r̃(q)(t) + u
(q)
1 (t) + u

(q)
2 (t), (25)

where u
(q)
1 (t) and u

(q)
2 (t) are summands to be deter-

mined.
The integral (24) taking into account (25) it is possible

to represent in the following form

η(q)(0, t) = η
(q)
1 (0, t) + η

(q)
2 (0, t),

η
(q)
1 (0, t) =

∫ t

0

u
(q)
1 (θ)v(q)(θ)dθ+

+ χ0q

∫ t

0

ỹ(q)(θ)v(q)(θ)dθ,

η
(q)
2 (0, t) =

∫ t

0

u
(q)
2 (θ)v(q)(θ)dθ+

+ k0q

∫ t

0

u(q)(θ − h)v(q)(θ)dθ.

The component u()q
1 (t) we synthesize as

u
(q)
1 (t) = h1ỹ

(q)(t)

∫ t

0

ỹ(q)(θ)v(q)(θ)dθ+

+ h2

(
ỹ(q)(t)

)2
v(q)(t), h1, h2 = const > 0.

(26)

Then the summand η
(q)
1 (0, t) we can estimate like

η
(q)
1 (0, t) =

∫ t

0

u
(q)
1 (θ)v(q)(θ)dθ+

+ χ0q

∫ t

0

ỹ(q)(θ)v(q)dθ =

=

∫ t

0

(
h1ỹ

(q)(θ)

∫ θ

0

ỹ(q)(ϑ)v(q)(ϑ)dϑ+

+ h2

(
ỹ(q)(θ)

)2
v(q)(θ)

)
v(q)(θ)dθ+

+ χ0q

∫ t

0

ỹ(q)(θ)v(q)(θ)dθ =

= h1

∫ t

0

ỹ(q)(θ)v(q)(θ)

∫ θ

0

ỹ(q)(ϑ)v(q)(ϑ)×

× dϑdθ + h2

∫ t

0

(
ỹ(q)(θ)v(q)(θ)

)2
dθ+

+ χ0q

∫ t

0

ỹ(q)(θ)v(q)(θ)dθ ≥

≥ 1

2

(
h1

(∫ t

0

ỹ(q)(θ)v(q)(θ)dθ

)2

+

+ 2χ0q

∫ t

0

ỹ(q)(θ)v(q)(θ)dθ +
χ2
0q

2h1

)
−

χ2
0q

2h1
≥ −

χ2
0q

2h1
= −η

(q)
01 , η

(q)
01 = const, ∀t > 0.

(27)

If we synthesize the component u(q)
2 (t) as follows

u
(q)
2 (t) = h3u

(q)(t− h)

∫ t

0

u(q)(θ − h)×

× v(q)(θ)dθ, h3 = const > 0,

(28)

then for the summand η
(q)
2 (0, t) we can obtain following

estimate:

η
(q)
2 (0, t) =

∫ t

0

u
(q)
2 (θ)v(q)(θ)dθ+

+ k0q

∫ t

0

u(q)(θ − h)v(q)(θ)dθ =

=

∫ t

0

h3u
(q)(θ − h)

∫ θ

0

u(q)(ϑ− h)×

× v(q)(ϑ)dϑθ + k0q

∫ t

0

u(q)(θ − h)v(q)(θ)dθ ≥

≥ 1

2

(
h3

(∫ t

0

u(q)(θ − h)v(q)(θ)dθ

)2

+

+ 2k0q

∫ t

0

u(q)(θ − h)v(q)(θ)dθ +
k20q
2h3

)
−

−
k20q
2h3

≥ −
k20q
2h3

= −η
(q)
02 ,

η
(q)
02 = const, ∀t > 0.

(29)

We take into account obtained estimates (27) and (29)
and obtain the relation

η(q)(0, t) ≥ −η
(q)
01 − η

(q)
02 = −η

(2)
0 = const,∀t > 0,

that means the integral inequality (19) fulfillment.
Thus the synthesized control law that has general form

(12) with respect to (25), (26) and (28) we should write
like (20).


