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Abstract: Progressive motions of two-mass systems in resistive media are analyzed.
The motion control is implemented by means of periodic relative displacements
of the masses. Different kinds of resistance forces acting upon the system are
considered, including linear and nonlinear resistance depending on the velocity,
as well as Coulomb’s dry friction forces. Constraints are imposed on the relative
displacements and velocities of the masses. Optimal periodic motions are deter-
mined that correspond to the maximal average speed of the system as a whole.
Experimental data confirm the theoretical results obtained. Models of mobile mini-
robots are described which are based on the principle presented in the paper.
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1. INTRODUCTION

A system of two or more bodies can move pro-
gressively in a resistive medium, if the bodies
perform periodic motions relative to each other.
One of these bodies (an inner one) can be con-
tained within a certain closed cavity inside the
other (outer) body, so that the system has no
outward moving parts such as screws, wheels, legs,
wings, etc. This well-known principle of motion is
utilized in various projects of mobile robots and
underwater vehicles (see, e.g., Breguet and Clavel,
1998; Schmoeckel and Worn, 2001; Vartholomeos
and Papadopoulos, 2006).

In this paper, simple models of this phenomenon
are analyzed. The mechanical system under con-
sideration consists of two rigid bodies of masses
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M and m. For brevity, these bodies will be called
body M and body m, respectively. Body m moves
periodically relative to the main body M which
interacts with the outward medium and is subject
to resistance forces.

Different kinds of resistance forces acting upon
body M are considered, including linear and non-
linear resistance depending on the velocity of the
body, and also Coulomb’s dry friction. The forces
can be anisotropic, i.e., dependent on the direction
of the velocity of body M .

The progressive motion of the system as a whole is
controlled by the periodic motion of body m rela-
tive to body M . Simple relative periodic motions
are analyzed, and constraints are imposed on the
relative displacements and velocities. Under the
constraints imposed, optimal parameters of the
periodic motions are determined that correspond
to the maximal average speed of the system as a
whole. The results obtained (see also Chernousko



Fig. 1. Mechanical models

2005, 2006a,b) enable one to evaluate the maximal
possible speed of mobile mechanical systems that
utilize the principle of motion based on relative
oscillations of parts of the system moving in a
resistive medium.

Experimental results confirm the practical imple-
mentability of this principle of motion.

2. EQUATIONS OF MOTION

The system consists of two rigid bodies that
can move along a straight line in a resistive
medium (Fig. 1). Denote by x and v the absolute
coordinate and velocity of the main body M ,
respectively, and by ξ, u, and w the displacement
of the inner body m relative to body M , its
relative velocity and acceleration, respectively.

The kinematic equations of motion of body m
relative to body M are

ξ̇ = u, u̇ = w. (1)

The dynamic equations for body M can be written
as follows:

ẋ = v, v̇ = −µw − r(v)

µ = m/(M + m),
(2)

where r(v) is the resistance force acting upon
body M divided by the total mass of the system,
M + m.

For the anisotropic linear resistance (Fig. 1a), the
function r(v) is given by

r(v) = k+v, if v ≥ 0;

r(v) = k−v, if v < 0.
(3)

Similarly, for the anisotropic quadratic resistance,
this function has the form

r(v) = æ+|v|v, if v ≥ 0;

r(v) = æ−|v|v, if v < 0.
(4)

In Eqs. (3) and (4), k+, k−, æ+, and æ− are
positive coefficients. For the isotropic case, k+ =
k− and æ+ = æ−.

For the case of anisotropic Coulomb’s friction
(Fig. 1b), the function r(v) is given by

r(v) = f+g, if v > 0;

r(v) = −f−g, if v < 0,
(5)

where g is the acceleration due to gravity, f+

and f− are coefficients of friction that can be
different for onward and backward motions. If the
inequalities

−f−g ≤ µw ≤ f+g (6)

hold and body M is at rest (v = 0), then it will
stay at rest.

In what follows, the motion of body m relative to
body M is supposed to be periodic with a period
T and bounded within a fixed internal:

0 ≤ ξ(t) ≤ L, (7)

where L > 0 is given. Without loss of generality,
it is assumed that at the beginning and at the
end of the period body m is at the left end of the
internal, so that

ξ(0) = ξ(T ) = 0, u(0) = u(T ) = 0. (8)

The maximal admissible displacement ξ(0) = L is
reached at some instant θ ∈ (0, T ).

The motion of the system is controlled by the rela-
tive motion of body m, i.e., by functions ξ(t), u(t),
and w(t) subject to Eqs. (1) and conditions (7)
and (8).

We will find the relative motions such that the
velocity v(t) of body M is T -periodic, i.e., v(0) =
v(T ) = v0, and the average velocity of the system
V = ∆x/T , where ∆x = x(T )−x(0), is maximal.

3. LINEAR RESISTANCE

Note that the anisotropic resistance (3) is, in fact,
nonlinear, if k+ 6= k−. In the case of the linear
resistance, k+ = k− = k. Substitute r(v) from
Eq. (3) and w from Eq. (1) into (2) and integrate
the resulting equation to obtain

v(T )− v(0) = −µ[u(T )− u(0)]− k[x(T )− x(0)].

Since u(t) and v(t) should be T -periodic, the
relation x(T ) = x(0) holds and, therefore, V = 0.
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Fig. 2. Relative motion

Hence, in the case of the isotropic linear resistance
for an arbitrary periodic relative motion of body
m, the system cannot move progressively and will
only oscillate about some mean position.

4. RELATIVE MOTION

Only the simplest class of relative periodic mo-
tions of mass m, which will be called two-phase
motions (Fig. 2), will be considered. Suppose that
the period [0, T ] consists of two intervals, where
u(t) is constant, and denote by τ1 and τ2 the du-
rations of these intervals and by u1 and (−u2) the
values of the relative velocity for these intervals.
Accordingly,

u(t) = u1 for t ∈ (0, τ1); u1 > 0, u2 > 0;

u(t) = −u2 for t ∈ (τ1, T ); T = τ1 + τ2.
(9)

Note that the function u(t) has jumps at t = 0 and
t = T . For convenience, without loss of generality,
we define u(t) = u(T ) = 0 at these instants.

The relative acceleration w = u̇ of body m for the
two-phase motion (9) is given by

w(t) = u1δ(t)− (u1 + u2)δ(t− τ1)

+u2δ(t− T ),
(10)

where δ(t) is Dirac’s delta function.

The two-phase motion is determined by two in-
dependent parameters: u1 and u2, or τ1 and τ2,
which are related by

τ1 = θ = L/u1, τ2 = L/u2,

T = L(u−1
1 + u−1

2 ).
(11)

If the relative velocity is bounded, the parameters
u1 and u2 should be subjected to the constraints

0 < ui ≤ U, i = 1, 2, (12)

where U is the maximal velocity allowed for the
relative motion.
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Fig. 3. Velocity of body M

5. NONLINEAR RESISTANCE

To find the periodic motions of body M for the
case (3), substitute Eqs. (3) and (10) into Eq. (2)
and integrate the resulting equations under the
initial condition v(0) = v0. Choose the parameter
v0 such that v(t) is T -periodic to obtain the
desired periodic solution (Chernousko, 2006).

v(t) = −µ(u1 + u2)(1− e2)
1− e1e2

exp(−k−t)

for t ∈ (0, τ1);

v(t) =
µ(u1 + u2)e2(1− e1)

1− e1e2
exp[−k+(T − t)]

for t ∈ (τ1, T );

v0 =
µ[u1e2(1− e1)− u2(1− e2)]

1− e1e2
,

e1 = exp(−k−τ1), e2 = exp(−k+τ2),

(13)

where the parameters u1, u2, τ1, τ2, and T satisfy
equations (11). The function v(t) from Eq. (13) is
shown in Fig. 3. To calculate the total displace-
ment ∆x, integrate v(t) from Eq. (13) over the
period [0, T ]. Divide the resulting expression by T
and use equations (11) to obtain

V =
∆x

T
=

µL(1− e1)(1− e2)(k−1
+ − k−1

− )
(1− e1e2)τ1τ2

. (14)

Hence, V > 0 only if k+ < k−, which is physically
quite natural. For given µ, L, k+, and k−, the
average speed V from Eq. (14) depends on two
parameters τ1 and τ2, or u1 and n2. The maxi-
mization of V with respect to these parameters
subject to the constraint (12) provides

Vmax =
µU2L−1(1− e1)(1− e2)(k−1

+ − k−1
− )

1− e1e2
,

e1 = exp(−k−L/U), e2 − exp(−k+L/U).
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Fig. 4. Modes of motion in the presence of dry
friction

In contrast to the case (3), for the quadratic
resistance (4) the average speed is positive even
for the isotropic case. If æ+ = æ− = æ and
µLæ < 1, the maximum average velocity in this
case is given by

Vmax = −U(2Læ)−1(1−µLæ) log(1−µ2L2
æ
2) > 0

Note that Vmax → ∞ as U → ∞ for both cases
(3) and (4).

6. COULOMB’S FRICTION

Consider now the case of Coulomb’s dry friction
(5) for the relative motion defined by Eqs. (9) and
(10).

According to Eqs. (2), (5), and (10), the velocity
v(t) of body M has two jumps at the ends of
the period [0, T ] and one jump at the instant
t = τ1 ∈ (0, T ) inside the period. Between these
jumps, body M is subjected only to constant
friction force. The absolute value of its velocity
here either decreases linearly in time or is equal
to zero, if the condition (6) is satisfied. Hence,
the period [0, T ] can include not more than two
intervals of rest where v = 0, one of these intervals
can be placed before the instant t = τ1 and the
other before t = T . Thus, the four modes shown
in Fig. 4 are possible:

A — no intervals of rest,

B — one interval of rest (t1, τ1),

C — one interval of rest (t2, T ),

D — two intervals of rest (t1, τ1) and (t2, T ).

Here, 0 ≤ t1 ≤ τ1 and τ1 ≤ t2 ≤ T .

Introduce the notation

a+ = f+g, a− = f−g, c = a+/a− (15)

and consider first mode A.

Using Eqs. (2), (5) and (10), and also the initial
condition v(0) = v0 and notation (15), we calcu-
late successively

v(τ1 − 0) = v0 − µu1 + a−τ1,

v(t1 + 0) = v(τ1 − 0) + µ(u1 + u2)

= v0 + µu2 + a−τ1,

v(T − 0) = v(τ1 + 0)− a+τ2

= v0 + µu2 + a−τ1 − a+τ2,

v(T ) = v(T − 0)− µu2 = v0 + a−τ1 − a+τ2.

(16)

It follows from Eqs. (16) and the periodicity
condition v(T ) = v0 that a−τ1 = a+τ2. Taking
into account relations (11) and (12), we obtain

cu1 = u2. (17)

For mode A, the inequalities v(τ1 − 0) ≤ 0 and
v(T − 0) ≥ 0 must hold. These inequalities,
together with Eqs. (15) – (17), imply

−µcu1 ≤ v0 ≤ µu1 − a−τ1. (18)

Introduce the non-dimensional variables

ui = u0xi, u0 = (a−L/µ)1/2, i = 1, 2,

v0 = µu0x0, V = µu0F,
(19)

and express τ1 by means of Eq. (11) to rewrite
inequality (18) as follows:

−cx1 ≤ x0 ≤ x1 − x−1
1 . (20)

The left-hand side of inequality (20) should not
exceed its right-hand side, which implies

x1 ≥ (1 + c)−1/2, cx1 = x2. (21)

The second equality (21) follows from Eqs. (17)
and (19).

Thus, the non-dimensional parameters x0, x1, and
x2 of mode A must satisfy conditions (20) and
(21). Integrate the function v(t) from Fig. 4 over
the interval [0, T ] for mode A to evaluate the
distance ∆x = x(T )−x(0) and the average speed
V = ∆x/T of body M . After certain calculations
using notation (19), we find

F = x0 + (2x1)−1. (22)

Modes B–D are analyzed analogously to mode
A. For each of the modes, three conditions are
obtained — one equality and two inequalities im-
posed on three parameters x0, x1, and x2, and also
the expression for the non-dimensional average
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speed F . The respective relations, similar to those
of (20) – (22), have the form

B : x0 = x1 − cx−1
2 , cx1 ≤ x2,

(x1 + x2)x2 ≥ c,

F = x1 −
c(c + 1)x1

2x2(x1 + x2)
;

C : x0 = −x2, cx1 ≥ x2, (x1 + x2)x1 ≥ 1,

F =
(1 + c)x2

2c(x1 + x2)x1
− x2;

D : x0 = −x2, (x1 + x2)x1 ≤ 1,

(x1 + x2)x2 ≤ c, F =
(1− c)(x1 + x2)x1x2

2c
.

(23)

Modes A–D take place in the respective domains
(23) in the plane of parameters x1 > 0 and x2 > 0.
These domains are shown in Fig. 5 for c > 1.
According to equations (21), mode A occurs on
the ray which is the boundary between domains
B and C. The boundaries between domain D and
domains B and C are the arcs of hyperbolas (x1+
x2)x2 = c, x1 ≤ (1 + c)−1/2, and (x1 + x2)x1 = 1,
x1 ≥ (1+ c)−1/2. These arcs and the ray x2 = cx1

meet at the point with the coordinates (Fig. 5)

x1 = (1 + c)−1/2, x2 = c(1 + c)−1/2.

Thus, for each pair of the non-dimensional para-
meters x1, x2, or the dimensional ones u1, u2 or
τ1, τ2, see Eqs. (19) and (11), one can determine
the respective mode of motion using Eqs. (21) and
(23) or Fig. 5. Moreover, for modes B–D, one can
also find the non-dimensional average speed F by
means of Eqs. (23). As for mode A, one should
first choose x0 according to inequalities (20) and
then evaluate F by means of Eq. (22). The values

of the dimensional velocities u1, u2, v0 and V are
determined by equations (19).

7. OPTIMIZATION

Determine the optimal values of the parameters
u1, u2, and v0 that correspond to the maximal
possible average speed of body M under the con-
straints (12). In terms of the non-dimensional pa-
rameters (19), the optimization problem is stated
as follows: find the parameters x0, x1, and x2 that
correspond to the maximal value of F under the
constraints

0 < x1 ≤ X, 0 < x2 ≤ X, X = U/u0. (24)

The function F is defined be equations (20)–(23)
in the respective domains A–D.

In (Chernousko, 2005, 2006a), additional assump-
tion v0 = 0 was made. It follows from Eqs. (20)
and (23) that this assumption is compatible with
inequalities (24) only for modes A and B. In this
paper we will not impose this additional assump-
tion.

Consider the behavior of the function F in
domains A–D. Note that this function grows
monotonically with x0 in domain A, see Eq. (22).
Hence, the optimal value of x0 is given by the
upper bound in (20) and, therefore,

x0 = x1 − x−1
1 , F = x1 − (2x1)−1 (25)

for mode A. The function F from Eq. (25) in-
creases with x1. Therefore, the required maximum
of F can be reached in domain A only at the
maximal possible x1 satisfying inequalities (24).

In domain B, the function F increases with x2.
Hence, its maximum can be attained in B only at
the maximal possible x2 compatible with condi-
tions (24). Furthermore, we have ∂2F/∂x2

1 > 0 for
all x1 > 0, x2 > 0. Thus, F is a convex function of
x1, and its maximum can be reached only at the
ends of the permissible interval of the parameter
x1.

For mode C, the function F , according to Eq. (23),
decreases monotonically with x1. Hence, its max-
imum is never reached within domain C and can
be attained only on its boundaries with domains
A and D, see Fig. 5.

In domain D, the function F increases with x1

and x2, if c < 1. If c > 1, this function is negative
and decreases with x1 and x2 in D.

Summarize now our observations and find the
required maximum of F over x1 and x2 subject
to constraint (24).

If c ≤ 1 and the point x1 = X, x2 = X lies within
domain D (it happens, if X ≤ (c/2)1/2), the
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required maximum of the function F is reached at
this point. If this point is outside D, then it lies
in domain B, and the maximum can be reached
either at the same point or at the intersection
of the line x2 = X with the boundary between
domains B and D. A comparison of the respective
values of F defined by Eq. (23) leads to the
conclusion that this maximum is always attained
at x1 = x2 = X.

If c ≥ 1 and X < 2−1/2c, then the function
F is always negative. Its zero upper bound is
approached, if x1 → 0 or x2 → 0. If c ≥ 1
and X ≥ 2−1/2c, then the required maximum is
attained in domain A at x1 = X/c, x2 = X.

The results obtained are presented in Fig. 6 and
by the formulas

c ≤ 1, X ≤ (c/2)1/2 : (x1, x2) ∈ D,

x1 = x2 = X, x0 = −X,

F = (1− c)X3/c;

c ≤ 1, X ≥ (c/2)1/2 : (x1, x2) ∈ B,

x1 = x2 = X, x0 = −X,

F = X − c(c + 1)(4X)−1;

c ≥ 1, X < c/21/2 : (x1, x2) ∈ D,

x1 → 0 or x2 → 0, x0 → 0, F → 0;

c ≥ 1, X ≥ c : (x1, x2) ∈ A,

x1 = X/c, x2 = X,

x0 = (X2 − c2)/(cX),

F = (2X2 − c2)/(2cX).

(26)

We can return to the original dimensional vari-
ables in (26) using the notation (19) and (24).

8. GENERALIZATIONS AND EXPERIMENTS

A number of other problems of optimal peri-
odic motions of two-mass systems in resistive me-

Fig. 7. Experimental models

Fig. 8. Mini-robot in a tube

dia were considered in (Chernousko, 2002, 2005,
2006a; Figurina, 2007). Optimal relative motions
with piecewise constant relative accelerations were
analyzed (Chernousko, 2002, 2005a, 2006a). A
problem of optimal control for a two-mass system
was solved in (Figurina, 2007).

The cases of one or more internal masses moving
in horizontal and vertical directions inside body
M were considered in (Chernousko et al., 2005;
Bolotnik et al., 2006). Due to the vertical motion
of the internal mass, the pressure of body M



exerted upon the horizontal plane changes and,
hence, the friction force changes too. Thus, an
additional increment of the average speed is at-
tained.

The principle of motion described above is imple-
mented in experimental models shown in Fig. 7.
The internal motions are performed either by an
inverted pendulum (Li et al., 2005) or by eccentric
rotating wheels. The experiments have shown the
implementability of motions induced by moving
internal masses.

Mini-robots that utilize the same principle and
can move inside tubes (Fig. 8) have been designed
and tested by Gradetsky et al. (2003).

9. CONCLUSIONS

Progressive motions of a rigid body controlled by
periodic oscillations of internal masses are ana-
lyzed. For a simple class of periodic relative mo-
tions, optimal controls are found that correspond
to the maximal average speed of the system in
various resistive media.

Experimental data confirm the theoretical results.
The principle of motion considered above is of
practical use for mobile robots, especially, for
mini-robots moving inside tubes and in corrosive
media.
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