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Abstract
In this paper we research a mathematical model of dy-

namics for the population number. We considered the
population of the two age classes by the beginning of
the next season: the younger, one including not repro-
ductive individuals, and the senior class, consisting of
the individuals participating in reproduction. The birth
parameter is represented the exponential functions of
the both age groups numbers. According to this suppo-
sition the density-dependent factors restrict the devel-
opment of population. Analytical and numerical anal-
ysis of the model is made. We investigate the dynamic
modes of the model. It is shown that density-dependent
factors of regulation for the population number can lead
to generation of fluctuations and chaotic dynamics be-
havior of the population.
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1 Introduction
In this paper we consider evolutionary scenarios of the

origination of oscillatory and chaotic population dy-
namics in the species with the simple age structure.
We take into account nonlinear interactions, observed
in nature, between different age groups in the popula-
tion, influencing the populations birth rate.
It is really the birth rate of many animals, small mam-

mals in particular, substantially decreases with the pop-
ulation growth. Usually, this is the manifestation of the
stress-syndrome leading to the decline of sexual activ-
ity and fertility of individuals. Sometimes, even dis-
solution of already existing embryos is observed. Such
observations are most common for the populations sub-
ject to large magnitude size oscillations, such as lem-
mings, field-voles etc.

2 Mathematical model
We consider the population which, by the end of each

reproduction season, consists of two age groups: ju-
veniles (immature individuals) and adults (participants
of the reproduction process). We assume that the time
between two reproduction seasons is enough for the ju-
veniles to become adults [Frisman, Skaletskaya, 1994,
Frisman, 1994]. The dynamic equations for our model
are as follows

xn+1 = a · yn · exp(−α · xn − β · yn)
yn+1 = s · xn + v · yn

}
(1)

where x is a number of juveniles, y is a number of
adults, n is a reproductive season number, s (0 ≤ s <
1) and v (0 ≤ v < 1) are the survival rates of juve-
niles and adults respectively, a is the maximum possi-
ble birth rate, α and β are the intensities of the birth
rate decline because of the growth of juvenile and adult
numbers respectively.

3 The model research
Substitutions βx → x and βy → y transform (1) to

xn+1 = a · yn · exp(−γ · xn − yn)
yn+1 = s · xn + v · yn

}
(2)

where γ = α/β. Analysis of this system is simpli-
fied by the introduction of the parameters r = as and
b = γ/s. Here r characterizes reproductive potential
of the population, and parameter b reflects the differ-
ence in the birth rate limitation due to the numbers of
juvenilesand adults. The system (2) may have only one
non-trivial stationary solution



x = 1−v
s(b−vb+1) · ln r

1−v

y = 1
b−vb+1 · ln r

1−v

}
(3)

which exists if r 6= 0, r ≥ 1 − v, 0 ≤ v < 1, v <
(1 + b)/b. Stability of the solution (3) depends on the
eigenvalues determined by the equation λ2 + pλ + q =
0.
The standard method of finding the stability domain is

based on the following theorem: Solutions of the equa-
tion λ2 +pλ+ q = 0 belong to the circle |λ| < 1 if and
only if

|p| − 1 < q < 1 (4)

[Shapiro, Luppov, 1983]. It is also shown in [Shapiro,
Luppov, 1983].] that the inequalities (4) define in the
plane (p, q) a triangle of stability. Its boundaries are
given by the lines:
1) q = −1− p, on this line one of the eigenvalues λ∗

is equal to 1;
2) q = p− 1, on this line one of the eigenvalues λ∗ is

equal to -1;
3) q = 1, on this line eigenvalues are complex num-

bers (λ1 · λ2 = 1), and on the segment (−2 < p < 2),
limiting the stability triangle, they are also conjugate:
λ1 = exp(iϕ), λ2 = exp(−iϕ).
In our case

p =
b(1− v)

1 + b(1− v)
· ln r

1− v
− v,

p =
1− v

1 + b(1− v)
·
(

bv − b− 1− (1 + bv) · ln r

1− v

)
.

And therefore the boundaries of the stability domain
for the equilibrium point (3) are as follows:

λ∗ = 1 : r = 1− v,

λ∗ = −1 : r = (1− v) exp
2v · (b + B)

(b−B)(1− v)
, (5)

q = 1 : r = (1− v) exp
(2− v)(b + B)

B(1− v)
, (6)

where B = 1− vb.
Fig.1 shows the variation of stability domain of the

system (2) non-zero equilibrium in coordinates (v; r)
for different values of parameters b, α and β.

Figure 1. Domains of existence and stability of the non-zero equi-
librium of the system (1).

4 Results
Note that the decline of the birth rate with the increase

of adult number only (α = 0) may lead to the emer-
gence of fairly complex oscillations of the population
size. Modest decrease in the birth rate with the increase
of juvenile number leads (at b 6 3/4) to substantial
growth of the parameter domain corresponding to the
stable population equilibrium. Qualitatively, the pat-
tern of stability loss does not change in this situation.
This loss happens either with the growth of parameter
r (the sooner the smaller the parameter r is) or with
the decrease of the survival rate (if reproduction po-
tential of the population is high). Loss of stability un-
der this model happens when the eigenvalues are conju-
gates and |λ| transitions through 1. This loss is accom-
panied by the emergence of limiting invariant curves
which disintegrate with further moving of the parame-
ters v and r away from the stability boundary, and then
form very complex limiting structures.
Fig.2 presents the bifurcation diagram showing depen-

dence of limiting distribution of number of juveniles
(x) on parameter r. This diagram provides visual con-
cept of the mode of population dynamics at b 6 3/4.
Fig.2 also presents portraits of the limiting trajectories



Figure 2. Changes in the attractor dimension (D) and 1st Lya-
punov coefficient (λ) with the change of parameter r; bifurcation
diagram of the dynamic variable x versus parameter r at b = 0.2
and v = 0.1; attractors for the system (2) for selected values of
parameter r..

of the system (2), i.e. attractors, corresponding to par-
ticular values of parameter r. In order to visualize the
domains of regular, quasi-periodic, and chaotic dynam-
ics, the graphs of the 1st Lyapunov coefficient (λ) and
attractor dimension (D) are also shown .
The bifurcation diagram and the graph of the attrac-

tor dimension nicely complement each other. Loss of
stability leads to the limit cycle (invariant curve) with
dimension 1. Further there are series of transitions of
invariant curves, cycles of finite length, and attractors
with various dimensions, including an attractor with
maximum dimension 2.
Further increase of birth rate restriction by the num-

ber of juveniles (3/4 < b < 1) leads to contraction of
the stability domain (fig.1). There appears a domain of
parameters v and r such that transition into it is accom-
panied by loss of equilibrium stability with an emer-
gence of 2-cycles and the transition of one of eigenval-
ues through -1.
At b > 1 the stability domain quickly contracts with

the parameter b growth; loss of stability only happens if
λ = −1 and is accompanied by a 2-cycles appearance.
If the birth rate is limited by the juvenile number only

(β = 0), the number of both age groups oscillates with
growing magnitude and 2-year period. The number of
the juveniles drops to zero at minimums and exponen-
tially grows in years of maximum. Oscillations of the
adults are asynchronous to the oscillations of juveniles;
both minimums and maximums are growing exponen-
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Figure 3. Oscillations of the numbers of juveniles and adults when
the number of adults does not limit the population growth.

tially, but at different rates, and the magnitude of the
oscillation is growing (fig.3).

5 Conclusion
Our analysis shows that birth rates decrease with the

number of adults is an efficient mechanism for control-
ling the population size. Through the growth of the
individual reproductive potential it can lead to oscil-
lations of population size with fairly complex tempo-
ral structure. If the birth rate also is controlled by the
number of juveniles then such a mechanism positively
affects stability only if the dependence on the number
of juveniles is modest and is weaker than the depen-
dence on the number of adults. If these requirements
are met, the stability domain increases substantially.
The regulation of the birth rate by the number of ju-

veniles appears to be inefficient; small increase of the
reproductive potential allows the population to start
growing exponentially, which leads to formation of
new restricting mechanisms.
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