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Abstract
We present here an example of how to synchronize

physical systems inspired in biological models using
the Poincaré coupling. With this type of coupling one
is able to study the synchronization phenomena among
coupled systems by means of a detection of a threshold
without disrupting the monitored system. The idea is
to generate a coupling signal, triggered in discrete pe-
riods of time as a response to the crossing events of
the monitored systems orbit with the previously defi-
ned Poincaré plane. This type of coupling comes to
satisfy the needs of forcing a system for some speci-
fic intervals of time, for example periodic, chaotic or
random events of triggering. In order to detect if the
systems are synchronized we use two methods: i) the
auxiliary system method measuring the Euclidean dis-
tance among the forced systems, ii) the maximum con-
ditional Lyapunov exponent. An illustrative example is
given by computer simulations in order to demonstrate
the approach proposed.
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1 Introduction
The idea of forcing a system by means of some

coupling signal in order to impose a desired behavior,
has been of great interest for the scientific community.
The applications may diverge in a vast range of areas,
since almost everything in nature and man-made arti-
facts contain coupled subsystems: the cells in the hu-
man body, the planets in the universe, cell phones in
communication systems, the metronomes on a boat,
among others.
Since the report of chaotic system from Lorenz [Lo-

renz, 1963], many studies have been made in order

to synchronize or suppress the chaotic behavior [Chen
and Dong, 1992; Chen and Dong, 1993; Kapitaniak,
1995; Aguilar-López et. al., 2010; Sambuco, Sanjuán
and Yorke 2012]. One of the most common method to
do so was the OGY method [Ott, Grebogi and Yorke,
1990]. In which the dynamics of a chaotic system is
monitored, and each time that the orbit of this sys-
tem diverge form a preestablished vicinity, the sys-
tem is forced to returned to that vicinity. A recent
coupling method was proposed in [Ontañón-Garcı́a et.
al., 2013]. This method is based on the idea that a sys-
tem is monitored by a Poincaré plane previously defi-
ned, and when the orbit of this system crosses the plane
a coupling signal is generated and applied to the forced
system. The main difference between this two methods
is that the OGY monitors and perturbs the same sys-
tem, while the Poincaré coupling monitors one master
system, but perturbs a different forced system.
Two important feature arise from this method: i) The

monitored system is never perturbed, as only its dy-
namic is being detected. ii) Time is considered in the
coupling signal, meaning that if the monitored system
presents a periodic orbit, the coupling will be applied
periodically, if the system is chaotic, then the coupling
will be applied chaotically in discrete events of time,
respectively. This attends to the needs of some biolo-
gical systems, in which the time is important to con-
sidered in order to induced an specific behavior. For
example the pancreatic β cells synchronize at specific
periods of time by the increase or decrease of substan-
ces such as intracellular calcium [Ontañón-Garcı́a and
Campos-Cantón, 2013]. It has also been discovered
that this particular biological system presents chaotic
behavior when coupled in the cluster of cells [Lebrun
and Atwater, 1985].
Taking this in consideration, we based this work on

the Poincaré coupling, and present an approach on how
to apply a coupling signal to the biological systems of
the β cell described by mathematical equations. To
do so we considered the benchmark chaotic systems



Rössler and Lorenz as the monitored systems, in or-
der to generate a coupling signal and apply it in chaotic
discrete events of time.
This work is organized as follows: In the second

section, we make a brief description of the Poincaré
coupling method and the benchmark systems used as
monitored systems. The third section describes the uni-
directional coupling used in the experiment along with
the model of the mathematical β cell system. In the
fourth sections are the numerical results of the compu-
ter simulations. Conclusions are made in the last sec-
tion.

2 Preliminaries on Poincaré plane
Here we make a brief description of the Poincaré plane

as defined by [Ontañón-Garcı́a et. al., 2013]. An auto-
nomous system described as:

x′ = F (x), F : Rm → Rm (1)

is being monitored by a Poincaré plane Σ :=
{(x1,x2,x3) : α1x1+α2x2+α3x3+α4 = 0} where
α1, . . . , α4 ∈ R are coefficients of a hyperplane equa-
tion whose values are considered arbitrarily according
to the following discussion. We are interested in the
crossing events of the trajectory of the monitored sys-
tem Eq. (1) restricted to the projectionAx with Σ, cap-
tured by the points {φt0

m(x0), φ
t1
m(x0), φ

t2
m(x0), . . .} ∈

Σ at each crossing event. Where φti
m(x0) is the flow

restricted to Ax. Therefore, we can specify the fo-
llowing time series ∆x0 = {t0, t1, t2, . . .}, which de-
pends on the initial conditions of the system in Eq. (1).
The location of the plane must be located in order to
meet the condition Ax

∩
Σ ̸= ∅, assuming that at least

one crossing event at time ti exists. Throughout this
work we have focused on the crossing events of the tra-
jectory of the monitored system with Σ in only one di-
rection. So the time series ∆x0 contains each crossing
event that satisfy dx1

dt > 0. Following the above discus-
sion, we define a coupling signal as follows:

ξ(t) = Ae−τ(t−ti), (2)

where A ∈ R is the amplitude of the signal and 0 ≤
τ ∈ R represents an underdamping factor which allows
us to modulate the signal. Therefore the underdamped
signal is triggered with each crossing event of Eq. (1)
with Σ.

2.1 Monitored systems
Two benchmark chaotic systems are considered in this

article as the monitored systems. The Rössler system
given by:

ẋ1R = −x2R − x1R,
ẋ2R = x1R − 0.2x2R,
ẋ3R = 0.2 + x3R(x1R − 5.7),

(3)

where x1R, x2R and x3R are the states of the system.
Figure 1 a) shows a projection of the Rössler system
onto the plane (x1R, x2R) intersected by the Poincaré
plane with α1 = 0.5934, α2 = −1.1636, α3 = 0, α4 =
−2.4068 marked with green, and all the crossing events
ti of each intersection of the Rössler system with the
plane ΣR are marked with asterisk. The Lorenz system
is given by:

ẋ1L = 10(x2L − x1L),
ẋ2L = 25x1L − x2L − x1Lx3L,
ẋ3L = x1Lx2L − 8/3x3L,

(4)

where x1L, x2L and x3L are the states of the sys-
tem. Figure 1 b) shows a projection of the Lorenz Sys-
tem onto the plane (xL, yL) intersected by the Poin-
caré plane with α1 = −0.179, α2 = −0.1739, α3 =
0, α4 = 0.0246 marked with green, and all the cros-
sing events ti of each intersection of the Lorenz system
with the plane ΣL are marked with asterisk.

3 Unidirectional coupling
Throughout the work we will consider a unidirectio-

nal coupling among the monitored system and the for-
ced system. Since some of the states of the monitored
system are involved in the coupling, then this system
is also a master system. The forced system takes the
form:

y′ = G(x,y), G : Rm ×Rn → Rn (5)

where y ∈ Rn stands for the state vector of the slave
system, and G(·) is the dynamics of the system (5).
Here we considered the mathematical model of a sin-
gle cell coupled in a cluster of cells described by [Per-
narowski, 1998], which is given as follows:

ẏ1 = ay31 + by21 + cy1 − y2 − y3,
ẏ2 = dy31 + by21 + ey1 − y2 − 3,
ẏ3 = fy1 + gy3 + h,

(6)

where y1 is the membrane potential, y2 is a channel
activation parameter for the voltage-gated potassium
channel, and y3 are concentrations of agents which re-
gulate the BEA, such as intracellular calcium, concen-
tration of calcium in the endoplasmic reticulum and
ADP. Here a = −1/12, b = 3/8, c = 37/64, d =



−10 −5 0 5 10 15
−15

−10

−5

0

5

10

x
1R

x 2R

a)

−20 −10 0 10 20
−30

−20

−10

0

10

20

30

x
1L

x 2L

b)

Figure 1. a) Projection of the monitored a) Rössler system onto the
plane (x1R, x2R), b) Lorenz system onto the plane (x1L, x2L).
Both systems are intersected by the Poincaré plane ΣR and ΣL,
respectively marked in green. The points of each crossing event
{φt0

m(x0), φ
t1
m(x0), φ

t2
m(x0), . . . } are marked with asterisk.
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Figure 2. Projection of the β cell system from Eq. (6) onto the
(y1, y2) plane, without coupling

13/12, e = −155/64, f = 1/100, g = 477/50000 and
h = −1/400 are specific values for which the system
exhibits square-wave bursting analogous to the BEA in
the pancreatic beta cell. Figure 2 depicts the projection
onto the (y1, y2) plane of the β cell system.
This system is coupled unidirectionally by the master

system (1) in the following way:

y′ =

 ẏ1
ẏ2
ẏ3

+ k

x1ξ(t)− y1
0
0

 . (7)
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Figure 3. a) Coupling signal ξ(t) from Eq. 2 generated from the
monitored Rössler system. b) Projection onto the (y1, y2) plane of
the forced system. c) Euclidean distance dn(y(i), z(i)).

where k ∈ R is the coupling strength. We will consider
the following parameters for the numerical simulation:
A = 1, k = 1, τ = 0.0031.

4 Numerical Results
To detect synchronization in the scheme proposed,

we use the auxiliary system approach presented by
[Abarbanel, Rulkov and Sushchik, 1996], in which
a system z′ = y′ is coupled in the same way as
(7) but initialized with a set of initial conditions z0
where y0 ̸= z0. If both system converge as t →
∞ and the distance between them given by the Eu-
clidean norm dn

(
{y(i)}i∈{1,...,n}, {z(i)}i∈{1,...,n}

)
=

1
n

∑n
i=1 ∥y(i) − z(i)∥ → 0, where n stands for the

number of iterations in the numerical simulation made



with a fourth-order Runge Kutta method, then we say
that the master and slave systems are coupled.

4.1 Rössler as master system
First we use the chaotic Rössler system given by

Eq. (3) as the monitored master system. The
sets of initial conditions for the systems are x0 =
[−1.1, 1.15, 0.6116], y0 = [−0.5, 0.1, 0.6116] and
z0 = [−7, − 8, 24]. The resulting coupling signal
ξ(t) with this configuration is shown in Figure 3 a). Fi-
gure 3 b) depicts the projection onto the (y1, y2) plane
of the forced system after the coupling, and in Figure 3
c) it can be seen the Euclidian distance dn between the
forced system and the auxiliary system. The systems
initialized with different initial conditions loose their
transient states after n = 120, 000 iteration. Note that
dn ← 0 after this value showing their convergence.
With this and with the maximum conditional Lyapu-
nov exponent which is−0.0327, we can assure that the
control signal forces the systems y′ and z′ to oscillate
equally meaning both systems are synchronized with
the master system.

4.2 Lorenz as master system
Changing now the monitored system as the Lorenz

system given by Eq. (4) results in the coupling signal
depicted in Figure 4 a). Using the same sets of initial
conditions as above outcome in the attractor depicted in
Figure 4 b), where a projection onto the (y1, y2) plane
is shown. From Figure 4 c) it can be observed that dis-
tance between the attractors dn also converge to zero
after a transient state, for this case 150, 000 iterations.
The maximum conditional Lyapunov exponent for this
system is −0.0236 meaning that also the master and
forced systems are synchronized.

4.3 β cell as master system
Based on the results shown above we decided to im-

plement one last experiment, considering the β cell gi-
ven by Eq. (6) as a monitored system x′. By locating
the same ΣL Poincaré plane with α1 = −0.179, α2 =
−0.1739, α3 = 0, α4 = 0.0246 we obtained the fo-
llowing results. Figure 5 a) shows the coupling signal
ξ(t) generated by the crossing events of this monito-
red system with ΣL. Figure 5 b) depicts the projection
onto the (y1, y2) plane of the resulting forced system,
and the Euclidean distance dn between y′ and z′ can
be appreciated in Figure 5 c). The forced systems con-
verge after 200, 000 iterations, and the maximum con-
ditional Lyapunov exponent is −0.0704 therefore the
master and forced systems are also synchronized.

5 Conclusion
We demonstrated in this work that with the Poincaré

coupling and a unidirectional coupling, one is able to
generate a coupling signal sent from the master to the
slave system, each time that the master system crosses
the previously defined plane. This coupling is capable
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Figure 4. Coupling signal ξ(t) from Eq. 2 generated from the mo-
nitored Lorenz system. b) Projection onto the (y1, y2) plane of the
forced system. c) Euclidean distance dn(y(i), z(i)).

of synchronize a biological system described by mat-
hematical models. The coupling signal was applied in
chaotic intervals of time due to the 2 chaotic monito-
red systems, and periodically when the β cell was mo-
nitored. The stability of the systems was determined
through the Lyapunov exponents.
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Figure 5. Control signal ξ(t) from Eq. 2 generated from the mo-
nitored β cell system. b) Projection onto the (y1, y2) plane of the
forced system. c) Euclidean distance dn(y(i), z(i)).
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