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Abstract
We study nonlinear continuous-time decentralized

consensus algorithms with delayed couplings for net-
works of single-order agents. The network topology is
undirected and may switch and the couplings may be
nonlinear and uncertain, but supposed to satisfy con-
ventional sector conditions. Using the absolute stabil-
ity methods, we obtain effective condition for conver-
gence of such consensus protocols, given that the net-
work graph is uniformly connected.
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1 Introduction
The problems of decentralized cooperative control in

networked multi-agent systems are attracting enormous
attention of the different research communities. These
problems deal with complex dynamical systems con-
stituted by autonomous simpler units, or agents, and
are focuse mainly on achieving some desired collec-
tive behavior of the agents by means of local interac-
tions. Examples of such a behavior are rendezvouz
(gathering at one point), bypassing an area, moving in
a swarm, target following etc. The term ”local interac-
tion” presumes that agent does not use any information
on the network in whole but interacts (via communi-
cation, sensoring or otherwise) to a restricted circle of
other agents (neighbors). The relation of neighborship
(in general, non-symmetric) determines the interaction
graph, or topology of the network. This topology may
be unknown and time-varying. Below we address the
consensus or synchronization problem which concerns
the design of algorithms, enabling the agents to get
their states (or some output variables) synchronized.
Consensus algorithms take their origin in applied

statistics, probability theory and theory of positive ma-

trices [DeGroot, 1974], [Seneta, 1981] on the one
hand, and in the computer science on the other hand
[J.N. Tsitsiklis and Athans, 1986]. The idea of con-
sensus (or synchronism) achieved via local interactions
lies at the heart of numerous natural and social phe-
nomena. Among them are synchronization of oscilla-
tor networks [Kuramoto, 1984], [Strogatz, 2000], [Ye-
ung and Strogatz, 1999], [Earl and Strogatz, 2003],
alignment in the flows of self-driven particles [Vic-
sek et al., 1995], opinion dynamics in social networks
[Krause, 2000], synchronization in complex networks
[Wu, 2007]. One of the most important applications
of the consensus algorithms is the formation control
and analysis of the regular collective behavior and in-
telligence of complex biological populations, such as
swarms of insects, schools of fish, flocks of birds, herds
of mammals etc. In the pioneering paper [Reynolds,
1987] the three empirical rules of flocking were pro-
posed: to avoid collisions with nearby flockmates, to
match velocity with nearby flockmates, to stay close
to nearby flockmates. The second of Reynolds’ rules
is nothing but the synchronization (alignment) of the
agents velocities. The history and profound results on
convergence of the consensus algorithms, as well as
further applications, can be found in e.g. in [Jadbabaie
et al., 2003], [Olfati-Saber and Murray, 2004], [Blon-
del et al., 2005], [Moreau, 2005], [Ren and Beard,
2005], [Olfati-Saber et al., 2007], [Lin et al., 2007] just
to mention a few.
Despite that the consensus protocols were seriously

investigated, a number of questions still remain open
even for the networks of simplest dynamical agents
modeled by the single integrator dynamics. One of
such problems is delay robustness of consensus pro-
tocols. This problem is of high importance since in-
evitable small delays in actuators, sensors and commu-
nication channels may potentially cause instability of
the closed-loop system. Despite the considerable ef-
forts towards finding effective criteria for consensus es-
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tablishing in the presence of delays (see e. g. [Münz,
2010] for the review of recent results), such conditions
are known for a few situations only.
The most exhaustively investigated are the consensus

algorithms with so-called “communication” delays that
do not affect the own state of the agent, see [Moreau,
2004], [Chopra and Spong, 2006], [Papachristodoulou
et al., 2010], [Münz, 2010] among the other. In other
words, each agent directly measures its state without
any delay but the data from neighboring agents may be
retarded. The Lyapunov-based techniques developed
for non-delayed protocols [Moreau, 2004], [Moreau,
2005], [Lin et al., 2007] may be directly extended
to consensus algorithms with bounded communication
delays. The common idea of those methods is to con-
sider the convex hull of the agents state vectors over
sufficiently long interval as a vector-valued analogue
of Lyapunov function (that shrinks as time progresses).
The diameter (calculated in appropriate norm) of the
convex hull appears to be a scalar Lyapunov function
for the system. Using such an approach, it may be
shown that bounded delays (with arbitrarily large up-
per bound) do not violate the consensus between the
agents.
The protocols with self-delays, arising e. g. if the

agents have retarded inputs [Tian and Liu, 2008] or use
delayed relative measurements (deviations between its
own and neigbors states) are tolerable to sufficiently
small delays only and can not be investigated by the
contraction arguments. Such algorithms were investi-
gated mainly for the case of fixed topology and linear
stationary couplings [Olfati-Saber and Murray, 2004],
[Bliman and Ferrari-Trecate, 2008], [Michiels et al.,
2009], [Münz, 2010], [Tian and Liu, 2008], [Lestas and
Vinnicombe, 2010] by using frequency-domain meth-
ods. The known results for switching topology also
deal with linear couplings, are not analytic and lead to
high-dimensional systems of LMIs [Qin et al., 2009],
[Lin and Jia, 2011]. Below we consider the case of non-
linear consensus algorithms with switching topology
and give easily verifiable sufficient analytic conditions
for convergence of such protocols. Unlike the previous
paper [Proskurnikov, 2010], the delays in communica-
tion links may be different and the graph is not assumed
to be constantly connected.

2 Problem Set Up
Throughout the paper GN stands for the set of all

undirected graphs (possibly disconnected) with com-
mon set of vertices VN = {1, 2, . . . , N}, having no
loops (arcs with coincident ends). For any G ∈ GN

and j ∈ VN let Nj(G) stand for the set of all neighbors
(adjacent vertices) of the node j in G. By definition of
undirected graph, k ∈ Nj(G) ⇐⇒ j ∈ Nk(G).
We consider a team of N independent agents modeled

by the first order equations

ẋj(t) = uj(t) ∈ Rd, j = 1, 2, . . . , N. (1)

Here xj , uj ∈ Rd stand respectively for the state vec-
tor and the control input of j-th agent. Let the topology
of the network be defined by a graph-valued function
G(·) : [0;+∞] → GN . That is, the interaction (by
means of data transmission, mechanical links, etc.) be-
tween the agent j, k is possible at time t ≥ 0 if and only
if k ∈ Nj(G(t)) (and thus j ∈ Nk(G(t))). Through-
out the paper we assume the function G(·) to be the
Lebesgue measurable, i.e. for any Γ ∈ GN the set
G−1(Γ) = {t : G(t) = Γ} is Lebesgue measurable.
Below we investigate distributed control policies or

protocols as follows

uj(t) =
∑

k∈Nj(G(t))

φjk(t, zjk(t− τjk(t)), (2)

where by definition

zjk(t) = xk(t)− xj(t), 1 ≤ j, k ≤ N. (3)

Here {φjk(t, y)}j ̸=k is a family of functions (with ar-
guments t ≥ 0, y ∈ Rd) referred to as couplings and
describing the interaction strength between the agents.
The delays τjk = τkj ≥ 0 are assumed to be con-
stant. Such control strategies are typical for decentral-
ized coordination and synchronization problems with-
out global reference frame in presence of communica-
tion and measurement delays. Each input uj is a func-
tion of delayed measurements of neighbors state vec-
tors, made in the j-th agent reference frame.
To provide the unique solvability of the closed loop

system (1), (2) one has to specify initial data:

xj(t) = αj(t), t < 0, lim
t↓0

xj(t) = α0
j (4)

We assume that αj ∈ L2([−maxk τjk; 0] → Rd) but
do not suppose the solutions to be continuous at t = 0,
so α0

j may be chose independently of αj .
We say that the protocol (2) establishes the asymptotic

consensus if for any i, j, 1 ≤ i, j ≤ N and arbitrary
initial data set {αj(·)}, {α0

j} one has

lim
t→+∞

|xi(t)− xj(t)| = 0. (5)

If additionally the states xj have common limit

lim
t→+∞

xj(t) =
1

N

N∑
k=1

α0
j , ∀j = 1, 2, . . . , N, (6)

the protocol (2) is said to provide average consensus.
Under the Assumption 1 below (symmetry of the pro-

tocol) the asymptotic consensus and average consen-
sus conditions are equivalent since

∑N
j=1 uj = 0 and∑N

j=1 xj(t) = const.
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The aim of the paper is to disclose easily verifiable
conditions for average consensus (6) for the wide class
of control algorithms (2) with the couplings φjk being
nonlinear and uncertain, but assumed to satisfy condi-
tions as follows.
Assumption 1. (Symmetry of delays and couplings)

For any pair 1 ≤ k, j ≤ N , i ̸= j and any t ≥ 0, y ∈
Rd one has φjk(t, y) = −φkj(t,−y) and τjk = τkj .�
Assumption 2. (Sector condition). A constant γ > 0

exists such that φij(t, x)
Tx ≥ γ−1|φij(t, x)|2 for any

i ̸= j.�
For the scalar case (xj(t) ∈ R) the sector condition

means that the graph of the function φij(·), i.e. the set
{(x, y) : y = φij(x)} lies between the lines y = 0 and
y = γx.
Assumption 3. If x ∈ Rd is separated from 0, the same

is true for φij(t, x): for any ε > 0 one has

ηij(ε) = inf{φij(t, x) : t ≥ 0, |x| ≥ ε} > 0. (7)

Our last assumption concerns the interaction graph
G(t). This supposition is analogous to the uniform
connectivity assumptions [Moreau, 2004], [Moreau,
2005], [Lin et al., 2007] and prevents decomposition
of the network into separate clusters. Let E(t), t ≥ 0
stands for the set of arcs of the graph G(t). For any
unordered pair of vertices e = {i, j} (with i ̸= j)
and interval ∆ = [t1; t2] ⊂ [0;+∞) let le(∆) =
mes{t ∈ ∆ : e ∈ E(t)} be the total time (over the
interval ∆) when the arc e exists in graph G(t), here
mes denotes the Lebesgue measure. Consider the set
Sε(∆) = {e : le(∆) > ε} of all possible edges with
“lifetime” on ∆ greater than ε > 0. We say the graph
(VN , Sε(∆)) ∈ GN to be ε-skeleton of the graph G(·)
on the interval ∆.
Assumption 4. There exist ε > 0, T > 0 such that the
ε-skeleton of G(t) on any interval [t; t + T ], t ≥ 0, is
connected.
Remark. Often the switching topology is piecewise-

constant with the dwell time (infimum of time lags be-
tween consequent switchings) positive. For this case
Assumption 4 means that for some T > 0 all of the

graphs (VN ,
t0+T∪
t=t0

E(t)) are connected. The latter con-

dition is a “UQSC (uniform strong quasi connected-
ness) property” proposed in [Lin et al., 2007], [Moreau,
2004]. Therefore Assumption 4 may be treated as a
generalization of UQSC property for the case of ar-
bitrary Lebesgue measurable underlying graph G(·) .
Notice that, as shown in [Lin et al., 2007], Theorem
3.8 for the case of positive dwell-time and undelayed
protocols, the UQSC property is almost necessary for
achieving consensus (and becomes necessary if one re-
quires the uniform convergence).
It should be noticed that the case of fixed topology

and linear time-invariant couplings φij(t, y) = wijy
(wij = wji > 0 for i, j being neighbors in G0 and
wij = 0 otherwise) was exhaustively studied in [Olfati-
Saber and Murray, 2004], [Bliman and Ferrari-Trecate,

2008], [Münz, 2010]. Let L0 be the Laplacian matrix
of the obtained weighted graph:

L0 =


∑N

j=1 w1j −w12 ... −w1N

−w21

∑N
j=1 w2j ... −w2N

...
...

. . .
...

−wN1 −wN2 ...
∑N

j=1 wNj

 ≥ 0,

and λN = λmax(L0) be its maximal eigenvalue. The
brilliant result by [Bliman and Ferrari-Trecate, 2008]
states that consensus is established if τjk < τ̄ := π

2λN

for any i, j. This estimate can not be improved, more-
over, for homogneous delays τij = τ the inequality
τ < τ̄ is necessary and sufficient for consensus [Olfati-
Saber and Murray, 2004]. More general analytic results
for discrete-time case were obtained in [Tian and Liu,
2008]. In the papers [Lestas and Vinnicombe, 2010],
[Münz, 2010] the case of fixed topology was analyzed
by means of extension of the Nyquist criterion.
However, the methods of mentioned papers use

frequency-domain analysis that is not applicable for
time-varying graphs and nonlinear protocols (2).

3 Main Result
The aim of this section is to give a simply verifiable

consensus conditions (expressed in terms of the topol-
ogy G(·), sector bound γ > 0 and maximal delay mag-
nitude) for the protocol (2) with the couplings satisfy-
ing Assumptions 1-4.
We define the adjacency matrix of the graph G ∈ GN

by aij(G) := 1 if the nodes i, j are adjacent in G and
aij(G) := 0 otherwise.
Let ξij(t) = aij(G(t))φij(t, xj(t−τij)−xi(t−τij)),

where aij(G) stands for the adjacency matrix of the
graph G ∈ GN . In particular, for any j one has

ẋj(t) = uj(t) =
N∑

k=1

ξjk(t) (8)

(by definition we have ξjj(t) = 0). Notice that all func-
tions ξij are Lebesgue measurable due to the measura-
bility of the graph-valued function G(·).
Our main result is based on the following lemma stat-

ing that for sufficiently small delays all of the functions
ξij are uniformly bounded in L2-norm.

Lemma 1. Suppose that the couplings φij and delays
τij satisfy Assumptions 1,2 and the claim is valid:

2γ(N − 1)τ < 1, τ := max τjk. (9)

Then a constant C > 0 exists depending on γ and the
delays (τjk) only such that

N∑
j,k=1

+∞∫
0

|ξjk(t)|2dt < C
N∑
j=1

|α0
j |2 +

0∫
−τ

|αj(t)|2dt

 .

(10)
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Here αj(·),α0
j are initial data from (4) and we take by

definition αj(t) = 0 for t < −τ .

The proof of Lemma 1 is based upon the absolute sta-
bility theory techniques extending the Popov method
[Popov, 1973], [Yakubovich, 2000] and can be found
in the Appendix.
It should be noticed that assumptions of Lemma 1 do

not concern the network topology, so the functions ξjk
and control inputs uj are L2-bounded under Assump-
tions 1,2 even if the protocol (2) can not establish con-
sensus (e.g. if the graph is totally disconnected).
Now we present the main result of the paper.

Theorem 1. Suppose that Assumptions 1-4 and (9)
hold. Then the protocol (2) provides consensus (and
thus average consensus).

Proof. Suppose on the contrary that the consensus (5) is
not achieved, so a number δ > 0, indices i, j and a se-
quence tn ↑ +∞ exist such that |xi(tn)−xj(tn)| ≥ δ.
Bounding ourselves with an appropriate subsequence
{tnk

}, we may suppose that tn+1 − tn > T , thus in-
tervals ∆n = [tn − T/2; tn + T/2] are disjoint (here
T is the number from Assumption 4). Since ε-skeleton
of G(·) on ∆N is a connected graph, for some indices
in, jn one has: 1) the existence time of the arc arc
en = (in, jn) on ∆n is greater then ε; 2) |xin(tn) −
xjn(tn)| > δ′ = δ/(N − 1). From Lemma 1 one
may conclude that uj ∈ L2, thus

∫ +∞
tn

|uj(t)|2dt → 0
as n → +∞. This implies that for sufficiently large
n the inequality |xin(t) − xjn(t)| > δ′ holds for any
t ∈ [tn − T/2 − τ ; tn + T/2], where τ = max

j,k
τjk.

Using Assumption 3, one obtains that φinjn(t, xin(t−
τinjn)−xjn(t−τinjn)) ≥ η0 = η(δ′) whenever t ∈ δn.
Therefore for n sufficiently large one has

N∑
j,k=1

∫
∆n

|ξjk(t)|2dt ≥
∫
∆n

|ξinjn(t)|2dt ≥ εη0,

which obviously contradicts to (10).�

Appendix A Proof of Lemma 1.
The proof is divided on two stages: the first stage

(summarized by Lemma 2) is to prove uniform bound
(10) (with common constant C > 0) for the case of
“stable” (in L2 sense) solutions, and the second one is
to prove that every solution is stable.
We start with the first part of the proof which is

based on the important result of V.A. Yakubovich on
quadratic functionals semiboundedness.
Let Z and Ξ be two complex Hilbert spaces of finite

dimension. Consider a linear stabilizable system

ż(t) = Az(t) +Bξ(t), t ≥ 0. (11)

Here A : Z → Z, B : Z → Ξ are linear operators. For
any a ∈ Z denote by Ma ⊂ L2([0;+∞) → Z × Ξ)

the set of all pairs w(·) = [z(·), ξ(·)] such that |w(·)| ∈
L2[0;+∞], (11) is satisfied and z(0) = a.
Consider a Hermitian functional J0(w) =
+∞∫
−∞

ŵ(iω)∗P (iω)ŵ(iω)dω, where ŵ stands for

the Fourier transform of w, P (·) bounded and analytic
at any point ω ∈ R operator-valued function such that
P (iω) = P (iω)∗ : Z × Ξ → Z × Ξ. Let

J(w) = J0(w) + 2Re

+∞∫
−∞

s(iω)∗ŵ(iω)dω (12)

where s(·) ∈ L2(iR → Z). We also introduce an
auxiliary operator-valued function Π(iω) defined for
ω ∈ R such that det(iωIn −A) ̸= 0:

Π(iω) = W (iω)∗P (iω)W (iω),

where W (iω) =

[
(iωIn −A)−1B

Im

]

The straightforward computation shows that for w =
[z, ξ] ∈ M0 one has ŵ(iω) = W (iω)ξ̂(iω) and thus

J0(w) =
+∞∫
−∞

ξ̂(iω)∗Π(iω)ξ̂(iω)dω.

Our goal is to find conditions which guarantee the
quadratic function J to be bounded from above on the
set Ma for any a. It is evident that necessary condition
is non-strict negative definiteness of J0 on the corre-
spondent linear space M0 which is easily rewritten as
Π(iω) ≤ 0 for any ω ∈ R. This condition appears to
be sufficient under certain additional assumption.

Theorem 2. Π(iω) ≤ 0 for any ω if and only if then
J0(w) ≤ 0 for any w ∈ M0. If Π(iω) ≤ 0 and a
matrix Π∞ > 0 exists such that Π(iω) ≤ −Π∞ < 0
for sufficiently large |ω|, then a constant C > 0 exists
depending on P,Q,R,A,B only, such that

sup
w∈Ma

J(w) ≤ C(|a|2 + ∥s∥2L2
).

Proof. In the case of Hurwitz matrix A the Theorem
2 directly follows from [Arov and Yakubovich, 1981],
Theorem 2, see analogous reasoning in the proof of
[Likhtarnikov and Yakubovich, 1983], Theorem 2. The
non-stable case reduces to the case of stable system by
the change of variables ξ = ξ′ +Kz such that the ma-
trix A+BK is Hurwitz.�
Consider the space Z of all matrices z = (zjk),
1 ≤ j, k ≤ N and the space Ξ ⊂ Z consisting of
all skew-symmetric matrices. Taking zjk = xk − xj ,
z = (zjk), ξ = (ξjk), where xj is a solution of (1),
(2) and ξjk are the same as in Lemma 1, the system (8)
is easily rewritten as (11) for appropriate A, B. Now
we take an integral quadratic constraint into account
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which follows follows from Assumption 2. Consider a
quadratic function J(z(·), ξ(·)) defined by

J =

+∞∫
0

N∑
j,k=1

ξjk(t)
∗zjk(t− τjk)dt−

−(γ−1 − ε)

+∞∫
0

N∑
j,k=1

|ξjk(t)|2dt.

Here ε > 0 is a sufficiently small number to be detailed
below. Assumption 2 implies that ξ∗jk(t)zjk(t− τjk) ≥
γ|ξjk|2 and thus J(z, ξ) ≥ ε

∑N
j,k=1 ∥ξjk∥2L2

.
Using the Plancherel theorem, the functional J is eas-

ily seen to have the form (12) with P (iω) bounded and
analytic. A straightforward computation shows that the
operator-valued function Π(iω) is defined by

ξ̂∗Π(iω)ξ̂ = 2

N∑
j,k=1

Re
ξ̂∗jkûje

−iωτjk

iω
−

−
(
1

γ
− ε

) N∑
j,k=1

|ξ̂jk|2.

where ξ̂ ∈ Ξ, ûj =
∑N

k=1 ξ̂jk. Since eiωτjk = 1 + βjk

where |βjk| ≤ |ω|τ , τ = max τjk, one has

N∑
k=1

Re
ξ̂∗jkûje

−iωτjk

iω
≤ τ |ûj |

√√√√(N − 1)
N∑

k=1

|ξ̂jk|2

(the multiplier (N − 1) appears here instead of N

since ξ̂jj = 0). At the same time |ûj |2 ≤ (N −
1)

∑N
k=1 |ξ̂jk|2. Therefore

ξ̂∗Π(iω)ξ̂ ≤
N∑

j,k=1

|ξ̂jk|2(2τ(N − 1)− γ−1 + ε)

Since 2τ(N − 1)γ < 1, for sufficiently small ε > 0
one has Π(iω) ≤ −δI , where δ > 0 is some small
constant. Due to Theorem 2, one obtains the result as
follows:

Lemma 2. The conclusion of Lemma 1 is valid when-
ever the solution of (1), (2) satisfies ξjk ∈ L2[0; +∞],
xk−xj ∈ L2[0;+∞] for any j, k. The constant C > 0
in (10) is independent on partial solution and is deter-
mined by the delays τij and constant γ only.

To accomplish the proof of Lemma 1, we need now
a result proving absence of “unstable” in L2-sense
solutions. This will be done by the following stan-
dard trick from absolute stability theory, used for prov-
ing “minimal stability” conditions [Yakubovich, 2000],

[Yakubovich, 2002]. Consider arbitrary protocol (2)
satisfying Assumptions 1,2 with the topology function
G(t). For some T > 0 and µ ∈ (0; γ) consider the new
coupling functions

φ̃jk(t, y) =

{
φjk(t, y), t ≤ T

µy, t > T

and the new underlying graph function G̃(t) which co-
incides with G(t) for t < T and is the complete graph
for t > T . The protocol

uj(t) =
∑

k∈Nj(G̃(t))

φ̃jk(t, xk(t−τjk(t)−xj(t−τjk(t)),

is known to provide consensus with exponential rate of
convergence due to the inequality µ < γ < 1

2(N−1) <
π
2N (see Theorem 1). At the same time, the solution
of the new closed-loop system coincides with the solu-
tions of (1),(2) for t < T . Accordingly to Lemma 2,
one has

N∑
j,k=1

T∫
0

|ξjk(t)|2dt < C
N∑
j=1

|α0
j |2 +

0∫
−τ

|αj(t)|2dt

 .

with C independent of T and initial data. taking limit
as T → +∞, one proves Lemma 1.
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