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Abstract
We consider a space station flight about an asteroid.

We claim that if the asteroid rotation about its mass
center is a regular precession then the space station can
be placed on the cable with ends fixed on the asteroid
poles. Thus an original space elevator for such aster-
oid can be realized. We divide the station equilibria on
the cable into two types and analyze one of these types,
varying the considered system parameters. We formu-
late some facts of stability for found equilibria.
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1 Introduction
We consider a space station motion on the cable with

ends placed in an asteroid surface. Such cable is
called ’the leier constraint’ [Rodnikov 2006a; Rod-
nikov 2006b; Rodnikov 2008a; Rodnikov 2008b; Rod-
nikov 2009a; Rodnikov 2009b]. In Dutch and in Rus-
sian the sailing term ’leier’ means the rope with fixed
ends. (Various aspects of a particle motion along space
tethers have been studied also in [Burov 2003; Buchin,
Burov and Troger],etc.). We claim that if the asteroid is
dynamically symmetric and if the ends of the cable are
fixed in the asteroid poles then there exists a set of the
space station equilibria on the cable. (Here poles are
the points in which the large principal axis of the aster-
oid crosses the asteroid surface.) So an original space
elevator for the asteroid can be realized.
If the asteroid gravitational potential depends only of

the distances up to the asteroid mass center and up to
the axis of dynamical symmetry, in particular, if as-
sumptions of the Generalized Restricted Circular Prob-
lem of Three Bodies (GRCP3B) [Beletsky, 2007] are
fulfilled, then all mentioned equilibria belong to two ro-
tating planes containing the asteroid mass center. Equi-
libria belonging to the plane composed by the asteroid
angular momentum and the asteroid axis of dynamical

symmetry is called z-equilibria (ZE). Coplanar Libra-
tion Points (CLP) of GRCP3B [Beletsky and Rodnikov
2008b] are examples of ZE. Equilibria belonging to the
plane being perpendicular to the asteroid angular mo-
mentum is called x-equilibria (XE). Triangular Libra-
tion Points (TLP) of GRCP3B [Beletsky and Rodnikov
2008a] are examples of XE. In this paper we study XE
differing from TLP. Varying parameters of the asteroid
we find the sets of XE for possible values of the cable
length. We claim that any XE is stable if the station mo-
tion along the cable is forbidden. Moreover, we study
existence and stability of ZE and XE if gravitation is
infinitesimal.

2 Preliminary notes, designations, parameters
Consider an asteroid with the mass centerC and axis

of dynamical symmetryCz. Let Cx1y1z1 be a frame
of König’s axes, i.e. axes moving translationally. Evi-
dently, even in the asteroid vicinity the Sun gravitation
is big in comparison with gravitation of the asteroid.
But taking into account the force of moving space, one
can show, that total influence of the Sun in the aster-
oid vicinity is very small in comparison with the as-
teroid gravitation. Thus, we can assume the asteroid
motion is a regular precession aboutCz1 with the an-
gular velocityω and with nutation angleϑ. Without
loss of generality,0 ≤ ϑ ≤ π/2. Let Cxyz be the
coordinate system rotating aboutCz1 with the angu-
lar velocityω. AssumeCx does not leaveCx1y1, so
Cz1 belongs toCzy. Denote byF1 andF2 the asteroid
poles (see fig. 1). Suppose the stationS is tethered to
the asteroid by the cableF1SF2 called the leier . Let
O beF1F2 midpoint,F1S + F2S = 2a, F1F2 = 2c.
Evidently, the station does not leave an ellipsoid with
foci F1 andF2 and with big semi-axisa. Denote by
x, y, z coordinates ofS in Cxyz. Let x = aρ cosϕ,
y = aρ sinϕ, z = aζ.
Clearly, the station motion along the leier and with

leier is completely determined by the asteroid gravi-
tational potentialΠ, by dimensionless parametersϑ,
d = OC/c, e = c/a and by dimensionless variables
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Figure 1.

ρ, ζ, ϕ. It can be assumed thatΠ doesn’t depend onϕ.
Trivially, if the station is on the ellipsoid surface then

(ζ − ed)2 + ρ2/(1− e2) = 1 (1)

Note also that0 < e < 1.

3 Integrable cases and equilibria types
Using Lagrange’s method, we deduce equations of the

station motion on the ellipsoid surface. Note that there
are two trivial cases when these equations are inte-
grable. Ifϑ = 0 thenϕ is a cyclic variable. Ifϑ = π/2
then we can integrate equation for the station motions
in Cx1y1 separately.
In the general case one of conditions for the station

equilibria in Cxyz on the ellipsoid surface for anyΠ
has a form

cos ϕ · (ρ sin ϕ sin ϑ + ζ cosϑ) = 0 (2)

It follows from (2) that there exist only two types of the
station equilibria. Ifζ = −ρ sin ϕ tan ϑ then the sta-
tion rotates aboutCz1 in Cx1y1 with angular velocity
ω. These equilibria are called XE. Ifϕ = ±π/2 then
the station doesn’t leaveCyz containingCz1. These
equilibria are called ZE.

4 X-equilibria in two-particles gravitational field
Now let ϕ 6= ±π/2. In this case, conditions for XEs

can be written in a form

{
∂Π
∂ζ + 2λd− (1 + 2λ) ζ = 0
∂Π
∂ρ −

(
1 + 2λ

1−e2

)
ρ = 0

(3)

Hereλ < 0 for the tense cable,λ = 0 for the non-
tense cable.λ > 0 is impossible. Suppose the asteroid

gravitation field is close to gravitational field of two
particlesM1 andM2 (fig. 1) with massesm1 andm2.
It follows that

Π = −αk3e3

(
µ

r1
+

1− µ

r2

)
(4)

where r1 = SM1/a, r2 = SM2/a, α =
G (m1 + m2) /ω2l3, G is the gravitational constant,
l = M1M2, µ = m1/ (m1 + m2), k = l/c. Evidently,
α > 0. Without loss of generality,m1 ≤ m2 ⇐⇒
0 < µ ≤ 1/2. Moreover, assumeCM1 = (1 − µ)l,
CM2 = µl. (Factually, here we replace the asteroid
with two homogeneous spheres forming a dumbbell.
Thus, all assumptions of GRCP3B [Beletsky, 2007] are
fulfilled) Substituting (4) into (3) after simplifications
one can present inequalityλ ≤ 0 in a form

2ζ − ke (1− 2µ)
eζ + d (1− e2)

≤ 0 (5)

Eliminating λ from (3)and taking into account (1,4),
we obtain equation that doesn’t depend onρ, ϕ, ϑ. Us-
ing this equation for coordinateζ calculation, we can
find sets of XEs for fixed values ofµ, d, k, α, ϑ and all
admissible values ofe. Thus we can define x-equilibria
set of the station on the leier for any concrete aster-
oid but for all admissible cable lengths). There are five
types of such sets.
d = 0, µ = 1/2 for the first type that is called ’full-

symmetric’. In this case from (5) it follows that only
ζ = 0 is possible. Ifα < 1/8 then any point ofCx
is XE. If α > 1/8 then XE set consist of two rays
|x| ≥ ke

√
α2/3 − 1/4 beginning in TLPs [Beletsky,

2007; Beletsky and Rodnikov 2008a]. Analyzing Ja-
cobi’s integral, one can show, that each equilibrium be-
longing toCx is unstable. Nevertheless, each XE be-
comes stable if to forbid the station motion along the
cable.
µ = 1/2, d 6= 0 for the second type that is called

’dumbbell-symmetric’. (Here without loss of general-
ity d > 0). Possible XEs sets are depicted in fig. 2. In
this fig. XEs set for0 < ϑ < π/2 is represented by
the curveβ with ends in TLPsL1 andL2. If ϑ = 0
then XEs set is a circleα consisting only of TLPs. If
ϑ → π/2 then β goes to the curveω. Note that if
µ = 1/2 then TLPs exist only ifα ≥ 1/8 [Beletsky,
2007]. Therefore, ifα ≤ 1/8 then the circleα van-
ishes andβ becomes an endless curve.
µ < 1/2, d = 0 for the third type that is called

’elevator-symmetric’. Only in this case XE sets are pre-
sented by infinite curves depicted in fig. 3.
µ < 1/2, d < 0 for the fourth type. In this case XE set

exists only ifϑ ≥ ϑmin, whereϑmin depends onα, d,
µ, k. (see fig. 4.) In this figureSm presents the unique
XE, existing forϑ = ϑmin)
µ < 1/2, d > 0 for the fifth type. In this case curves

consisting of XEs envelopC (see fig. 5). In this fig. the
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circleω is XEs set forϑ = π/2. Here each set of XE is
like stationary orbit more than in other cases.
Figures 3,4,5 are depicted forα > 1/8. In this case

for anyα, d, µ, k there existsϑ∗ such that ifϑ > ϑ∗
then sets of XEs are represented by curvesγ with ends
in TLPsL1 andL2. γ goes toω if ϑ → π/2. If ϑ ≤ ϑ∗
then sets of XEs are represented by endless curvesβ.
In the opposite caseα ≤ 1/8 there are only endless
curvesβ. In all figures the axisCy2 is projection of
Cy to Cx1y1. Note also that in first, second and third
type for fixed value ofe there exist not more than 2 XEs
. In fourth and fifth type for fixed value ofe there exist
not more than 4 XEs.
Using A.P.Ivanov’s theorem [Ivanov 1984; Ivanov

1997]and analysing Jacobi’s integral of the studied
problem, we get the following criterion for stability of
XEs that are not ZEs: x-equilibrium is stable if the sta-
tion motion along the cable is forbidden, if the cable is
tense and if0 < ϑ < π/2.
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5 Equilibria for zero gravitation

Now assumeΠ = 0. This situation takes place if,
for example, some load coast along on the leier teth-
ered to an extended space station that factually is an
artificial asteroid. It can be checked that if gravita-
tional is infinitesimal then for fixede there exist 4 ZEs
and 2 or 0 XEs. For coordinates of two first ZEs we
haveρ/ζ = ± tan ϑ. These equilibria are the com-
mon points of the axis of precession and the ellipsoid
(1). Evidently, the leier is not tense in these points. It
can be proved that equilibria in theCz1 are unstable.
For the third ZE we haveρ/(ζ − ed) =

(
1− e2

)
cot ϑ.

This equilibrium is stable for anyd, e andϑ 6= 0. The
fourth ZE isρ/(ζ − ed) = − (

1− e2
)
cot ϑ. This ZE



is stable only if

d <
e sin ϑ√

1− e2 sin2 ϑ
(6)

Note that the tangential plane to (1) is parallel toCz1

in the last two ZEs. In our case XEs exist only if (6)
is fulfilled. These equilibria are always unstable. Their
coordinates are

x = ±a
√

1−e2

e sin ϑ

√
e2 sin2 ϑ− d2 (1− e2 cos2 ϑ),

y =
ad(1−e2)

e cot ϑ, z = −ad(1−e2)
e

(7)

Note also that the cable is tense for the last 4 equilibria.
(In this section we assume without loss of generality
d ≥ 0).

6 Conclusion
In this paper a space station equilibria on a cable with

ends placed in poles of a dynamically symmetric as-
teroid are studied. These equilibria are divided into
two classes. One of these classes is studied in the as-
sumption, that the asteroid gravitational potential can
be replaced with potential of two particles. This class
is shared into five types of equilibria sets depending on
values of the system parameters. It is proved that the
studied equilibria are stable if the station ’is pasted’ to
the cable. Criteria of existence and stability for equilib-
ria of both classes are deduced in the assumption that
the asteroid gravitation is infinitesimal.
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