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Abstract
In this article, the linear quadratic optimization prob-

lem subject to fractional order differential algebraic sys-
tems of Riemann-Liouville type is studied. The goal of
this article is to find the optimal control-state pairs sat-
isfying the dynamic constraint of the form a fractional
order differential algebraic systems such that the linear
quadratic objective functional is minimized. The trans-
formation method is used to find the optimal control-
state pairs for this problem. The optimal control-state
pairs is stated in terms of Mittag-Leffler function.
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1 Introduction
Recently, many issues in the physical field have used

the optimal control theory for problem solving. This
information can be found in literatures such as [Frank
et all, 2016], [Melendez and Santos, 2017], [Arafa et all,
2017], [Anbarasi and Kanthalakshmi, 2016]. As re-
ported in [Frank et all, 2016], the optimal control theory
is applied for a complex atomic quantum system.

The linear quadratic optimization for fractional order
differential algebraic systems is a specific optimal con-

trol problem of the following form:

min
%
J (%, ζ) =

1∫
0

(〈ζ,Qζ〉+ 〈%,R%〉) dt, (1)

s.t. (EDαt −A) ζ = B%, ζ(0) = ζ0, (2)

where 〈·, ·〉 denotes inner product of two vec-
tors, ζ = ζ(t) ∈ Rn denotes state, % = %(t) ∈
Rr denotes control, E,A ∈ Rn×n with rank(E) < n,
B ∈ Rn×r, Q and R are symmetric positive defi-
nite matrices. In the dynamic constraint (2), Dαt de-
notes the fractional derivative operator of order α, α ∈
(m− 1,m) with m ∈ N. The dynamic constraint in
equation (2) is called a fractional differential algebraic
system [Muhafzan et all, 2019]. It can be proved that
the solution of fractional differential algebraic system
(2) exists if det (sαE −A) 6= 0 for some s ∈ C [Batiha
et all, 2018]. The dynamical system of this kind for the
matrix E = I has been discussed in [Khanduzi et all,
2020], [Evirgen, 2016] and [Evirgen, 2017]. Note that
for α = 1, the operator Dαt constitutes an usual deriva-
tive and this already studied in [Petrenko et all, 2020],
[Zulakmal et all, 2018] and [Muhafzan, 2010]. An appli-
cation of the optimal control problem (1) and (2) in me-
chanical descriptor system for α = 1 is given in [Muller,
1999].

It is well known that the problem to be solved in the
optimization problem (1) and (2) is to find the control-
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state pairs (%, ζ) satisfying the fractional dynamic con-
straint (2) such that the objective functional (1) is mini-
mized. To the best of the author’s knowledge, little work
has been done with the optimization problem (1) subject
to the fractional dynamic system (2). However, this is-
sue was discussed in [Chiranjeevi and Biswas, 2020] re-
cently, for which Dαt is the fractional derivative operator
in terms of the Caputo.

In this paper we discuss the linear quadratic optimiza-
tion problem of infinite horizon subject to differential al-
gebraic system of fractional order of the following form:

min
%
J (%, ζ) =

∞∫
0

(〈ζ,Qζ〉+ 〈%,R%〉) dt, (3)

s.t. (EDαt −A) ζ = B%, ζ(0) = ζ0, (4)

where Dαt is the fractional derivative in terms of

Riemann-Liouville of order α ∈ (0, 1). The aim of this
paper is to find the control-state pairs (%, ζ) satisfying
the fractional dynamic constraint (4) such that the ob-
jective functional (3) is minimized. The solving method
is to transform the linear quadratic optimization (3) and
(4) into the standard fractional linear quadratic optimiza-
tion. Using the theory for the standard fractional linear
quadratic optimization, we find the optimal control-state
pairs (%, ζ) for the optimization problem (3) and (4) for
which they are stated in a combination of the Mittag-
Leffler functions. Indeed the linear quadratic optimiza-
tion problem (3) and (4) constitutes an extension of the
linear quadratic optimization problem proposed in [Chi-
ranjeevi and Biswas, 2020]. Therefore the results of this
paper constitute a new contribution in the field of opti-
mization subject for fractional differential algebraic dy-
namic system. Moreover, this result can be also used to
extent the results in [Muller, 1999] on the linear mechan-
ical descriptor systems for fractional derivative of order
α, with α ∈ (0, 1).

The rest of the paper is organized as follows. Section
2 considers some preliminaries information about the
Riemann-Liouville fractional derivative, Mittag-Leffler
function and fractional order differential equation sys-
tem. Section 3 presents the transformation process the
linear quadratic optimization problem subject to frac-
tional order differential algebraic system into the stan-
dard fractional linear quadratic optimization problem.
The main result of this article and a numerical example
illustrating the results is also given in section 3. Section
4 concludes the paper.

2 Preliminaries Information
There are several mathematical tools used in this study.

The following statement is the definition of the fractional
order Riemann-Liouville derivative and Mittag-Leffler
function. Let ζ :[0,∞)→ Rn be an integrable function.
The Riemann-Liouville fractional derivative of order α

with α ∈ (m− 1,m) , m ∈ N, is defined by

Dαt ζ(t) =
1

Γ(m− α)

dm

dtm

t∫
0

(t− τ)m−α−1ζ(τ)dτ,

(5)
where Γ(.) is the Euler Gamma function [Batiha et all,
2018]. One can easily find that the Riemann-Liouville
fractional derivative of order α ∈ (m− 1,m) , m ∈ N
for a constant function c is ct−α

Γ(m−α) . It is clear that such
a derivative is different from the usual derivative of a
constant function c.

The one parameter Mittag-Leffler function is defined
by

Eβ(z) =

∞∑
j=0

zj

Γ(jβ + 1)
, z ∈ C, (6)

where β > 0 [Batiha et all, 2018], [Evirgen and
Ozdemir, 2011]. One can replace variable z in (6) by
Az for an arbitrary square matrix A, such that

Eβ(Az) =

∞∑
j=0

Ajzj

Γ(jβ + 1)
. (7)

It is easy to see that

E1(Az) =

∞∑
j=0

Ajzt

Γ(j + 1)
=

∞∑
j=0

Ajzj

j!
= exp(Az). (8)

The two parameters Mittag-Leffler function for Az was
given by:

Eβ,γ(Az) =

∞∑
j=0

Ajzj

Γ(jβ + γ)
, (9)

where β, γ > 0. It is clear that Eβ,1(Az) = Eβ(Az). The
Mittag-Leffler function (6) and (9) are convergent series
[Batiha et all, 2018].

The Mittag-Leffler play an important role in solving
the system of the following fractional differential equa-
tions:

Dαt ζ = Aζ + %, ζ(0) = ζ0, 0 < α < 1, (10)

whereDαt is the Riemann-Liouville fractional derivative.
Using the Laplace transformation one can easily prove
the following theorem.

Theorem 1. [Hristova et all, 2020] The solution of sys-
tem (10) is

ζ(t)=tα−1Eα(Atα)ζ0 +

t∫
0

(t−s)α−1Eα,α(Atα)%(s)ds,

(11)
for t ∈ [0, T ].
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3 Transformation and Solution
Reconsider the linear quadratic optimization problem

(3) and (4). A control-state pair (%, ζ) is called admis-
sible for the optimization problem (3) and (4) if it satis-
fies the constraint (4) for an initial state ζ0 ∈ Rn and
J (%, ζ) < ∞. A control-state pair (%∗, ζ∗) is called
an optimal control-state pair for the optimization prob-
lem (3) and (4) if it is an admissible and J (%∗, ζ∗) =
min J (%, ζ). Let us define the admissible control-state
pairs set for the optimization problem (3) and (4) by

Y , {(%, ζ)| (%, ζ) is continuous satisfies (4)

and J (%, ζ) <∞} .

The problem under consideration is how the explicit
formulation of the optimal control-state pairs (%∗, ζ∗) ∈
Y such that

J (%∗, ζ∗) = min
%
J (%, ζ). (12)

First of all, let us transform the linear quadratic opti-
mization problem (3) and (4) into the standard fractional
linear quadratic optimization problem. For this purpose,
we adopt the Definition 1 in [Fang et all, 2014] and the
Singular Value Decomposition(SVD) Theorem [Klema
and Laub, 1980] to find a restricted system equivalent
(r.s.e.) to the system (4).

Definition 1. A fractional order differential algebraic
system (

ĒDαt − Ā
)
ζ̆ = B̄%, ζ̆(0) = ζ̆0

is said to be a restricted system equivalent (r.s.e.) to the
system (4) if there exist two nonsingular matrices U, V ∈
Rn×n such that UEV = Ē, UAV = Ā, UB = B̄ and
ζ = V ζ̆.

Obviously, the restricted system equivalence is an
equivalent relationship and it is consistent with Defini-
tion 1 in [Fang et all, 2014] for the standard differential
algebraic systems.

Let rank(E) = p < n. Base on the Singular Value De-
composition(SVD) Theorem [Klema and Laub, 1980],
there exist the nonsingular matrices U, V ∈ Rn×n such
that

UEV = diag (Ip, O) , (13)

where Ip is an identity matrix of size p × p and O is a
zero matrix. Using these U and V matrices, we have the
following fractional order differential algebraic system(

diag (Ip, O)Dαt −
[
A11 A12

A21 A22

])[
ζ1
ζ2

]
=

[
B1

B2

]
%,

(14)

with ζ1(0) = ζ10, which is r.s.e. to the fractional dy-
namic constraint (4), where[
A11 A12

A21 A22

]
= UAV,

[
B1

B2

]
= UB,

[
ζ1
ζ2

]
= V −1ζ

(15)
with A11 ∈ Rp×p, B1∈ Rp×r, ζ1 ∈ Rp and ζ10 =[
Ip O

]
Uζ0.Assume that the system (4) is impulse con-

trollable. One can observe that the transformation (13)
and (15) implies the system (14) is also impulse control-
lable, see [Zulakmal et all, 2018]. This is equivalent to

rank
[
A22 B2

]
= n− p. (16)

Using the transformation V −1ζ =

[
ζ1
ζ2

]
, the objective

function (3) can be replaced with

min
%
J (%, ζ) =

∞∫
0

(〈ζ1, Q11ζ1〉+ 2 〈ζ1, Q12ζ2〉

+ 〈ζ2, Q22ζ2〉+ 〈%,R%〉) dt, (17)

where
[
Q11 Q12

Q>12 Q22

]
= V >QV withQ11 ∈ Rp×p, Q12 ∈

Rp×(n−p) and Q22 ∈ R(n−p)×(n−p). Using the condi-
tion (16), the solution of equation (14) is[

ζ2
%

]
=
[
−Â†A21 Φ

] [ ζ1
v

]
, (18)

for some full rank matrix Φ ∈ R(n−p+r)×r

with Φ ∈ker
[
A22 B2

]
, v ∈ Rr and Â† =[

A22 B2

]>([
A22 B2

] [A>22

B>2

])−1

is the generalized

inverse of the matrix
[
A22 B2

]
. Using the expression

(18), the following transformation is created:
ζ1
−−
ζ2
%

 =

[
Ip O

−Â†A21 Φ

] [
ζ1
v

]
. (19)

By substituting (19) into (17), we obtain the following
linear quadratic optimization problem:

min
v
J (v, ζ1) =

∞∫
0

(〈
ζ1, Q̄11ζ1

〉
+ 2

〈
ζ1, Q̄12v

〉
+
〈
v>, Q̄22v

〉)
dt, (20)

s.t.
(
Dαt − Ā

)
ζ1 = B̄v, ζ1(0) = ζ10,

where

Ā = A11 −
[
A11 B1

]
Â†A21, B̄ =

[
A11 B1

]
Φ,
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Q̄11 = Q11 + (Â†A21)>
[
Q22 O
O R

]
Â†A21,

Q̄12 =
[
Q12 O

]
Φ− (Â†A21)>

[
Q22 O
O R

]
Φ,

Q̄21 = Φ>
[
Q21

O

]
− Φ>

[
Q22 O
O R

]
Â†A21,

Q̄22 = Φ>
[
Q22 O
O R

]
Φ. (21)

One can see that the linear quadratic optimization prob-
lem (3) and (4) is equivalent to the standard linear
quadratic optimization problem (20) with the state ζ1 and
the control v. Furthermore, the optimal control-state
pairs (%∗, ζ∗) can be found by solving the standard frac-
tional linear quadratic optimization problem (20).

One can observe that the positive definite assumption
of the matrix Q and R implies Q̄22 in equation (21)
is also positive definite. Therefore, one can use the
theory in [Matychyn and Onyshchenko, 2018] and [Li
and Chen, 2008] regarding the standard fractional lin-
ear quadratic optimization problem. Using the results in
[Matychyn and Onyshchenko, 2018], the optimal state
pairs (v∗, ζ∗1) for optimization problem (20) exists and
unique if

rank
([
B̄ | ĀB̄ | . . . | Āp−1B̄

])
= p.

The control that minimizes J (v, ζ1) is given by

v∗ = −Q̄−1
22 (Q̄>12 + B̄>S)ζ∗1 , (22)

where the state ζ∗1 is the solution of the following frac-
tional differential equation:

(Dαt −K) ζ1 = 0, ζ1(0) = ζ10, (23)

whereK = Ā− B̄Q̄−1
22 (Q̄>12+B̄>S) with S is the unique

positive definite solution of the following algebraic Ric-
cati equation:

Ā>S+SĀ+Q̄11−(SB̄+Q̄12)Q̄−1
22 (SB̄+Q̄12)> = O.

(24)
Using the equation (11), the solution of equation (23) is
given by

ζ1(t)=tα−1Eα(Ktα)ζ10.

Likewise, using the transformation (15) and (19), the op-
timal control-state pairs (%∗, ζ∗) of the linear quadratic
optimization problem (3) and (4) is given by[
ζ
%

]
=

[
N O
O Ir

] ζ1ζ2
%


=

[
N O
O Ir

] Ip O
A1 Φ1

A2 Φ2

[ Ip
−Q−1

22 (Q>12 +B>S)

]
ζ1

=

[
N O
O Ir

] Ip
A1 − Φ1Q

−1
22 (Q>12 +B>S)

A2 − Φ2Q
−1
22 (Q>12 +B>S)

 ζ1,

or in a separate form given by

%∗ = tα−1
(
A2 − Φ2Q̄

−1
22 (Q̄>12 + B̄>S)

)
Eα(Ktα)ζ10

(25)
and

ζ∗ = tα−1N

[
Ip

A1 − Φ1Q̄
−1
22 (Q̄>12 + B̄>S)

]
Eα(Ktα)ζ10,

(26)

where
[
A1

A2

]
= − Â†A21, Φ=

[
Φ1

Φ2

]
, A1 ∈

R(n−p)×p,A2 ∈ Rr×p,Φ1 ∈ R(n−p)×r and
Φ2 ∈ Rr×r.

One can see that the optimal control-state pairs is
stated in terms of Mittag-Leffler function.

In order to illustrate the results, let us consider the lin-
ear quadratic optimization problem (3) and (4) where the
matrices E,A,B,Q and R are given as follows:

E =


2 0 0 0
0 1 −1 0
0 0 0 0
0 0 0 0

 , A =


−1 0 1 0
−1 0 −1 0

0 −2 2 −1
1 2 −1 0

 ,

B =


6
0
3
1

 , Q =


2 1 −7 −4
1 1 −4 −3
−7 −4 25 15
−4 −3 15 10


and R = 1 with the initial state is ζ0 =

[
2 0 0 0

]>
. It

is clear that p = 2. By taking the matrices

U =


0.5 0 0 0
0 0.7071 0 0
0 0 0 1
0 0 1 0

 , V =


1 0 0 0
0 0.7071 0 0.7071
0 −0.7071 0 0.7071
0 0 1 1

 ,
we have

UEV =

[
I2 O
O O

]
.

It is easy to verify that rank
[
A22 B2

]
= 2, thus the

fractional differential algebraic system (14) is impulse
controllable. By choosing

Φ =
[
−0.4082 0.8660 0.2887

]> ∈ ker
[
A22 B2

]
,

the problem (3) and (4) can be equivalently changed
into the standard fractional linear quadratic optimization
problem (20) where ζ1 ∈ R2,v ∈ R with

Ā =

[
−1.4167 −0.5303
−0.1179 2.2500

]
, B̄ =

[
0.7217
0.2041

]
,
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Figure 1. State trajectories for α = 0.9

Figure 2. Control trajectory for α = 0.9

ζ1(0) =

[
1
0

]
, Q̄11 =

[
41 126.5721

126.5721 392.500

]
,

Q̄12 =

[
−8.6603
−28.1691

]
, Q̄22 = 3.

Since rank
([
B̄ | ĀB̄

])
= p = 2, the control that mini-

mizes J (v, ζ1) is given by

v∗ = −
[

0.4397 32.7423
]
ζ∗1 ,

where the state ζ∗1 is the solution of the following frac-
tional differential equation:(

Dαt −
[
−1.7340 −24.1601
−0.2076 −4.4335

])
ζ1 =

[
0
0

]
, (27)

with ζ1(0) =

[
1
0

]
, and the solution of the algebraic Ric-

cati equation (24) is given by the matrix

S =

[
14.4483 −2.1935
−2.1935 626.9672

]
.

The solution of the fractional differential equation (27)
is

ζ1(t) = tα−1Eα
([
−1.7340 −24.1601
−0.2076 −4.4335

]
tα
)[

1
0

]
= tα−1

∞∑
j=0

[
0.7581(−0.47)j tjα

Γ(jα+1)

0.0397(−5.70)j tjα

Γ(jα+1)

]

= tα−1

[
0.7581Eα(−0.47tα)
0.0397Eα(−5.70tα)

]
,

thus

v∗ = −tα−1

[
0.4397
32.7423

]> [
0.7581Eα(−0.47tα)
0.0397Eα(−5.70tα)

]
= −tα−1(0.33Eα(−0.47tα) + 1.3Eα(−5.70tα)).

Using (25) and (26) we find

ζ∗ = tα−1


0.76Eα(−0.47tα)

−0.54Eα(−0.47tα) + 0.31Eα(−5.70tα)
−0.54Eα(−0.47tα) + 0.25Eα(−5.70tα)
−1. 43Eα(−0.47tα)− 0.80Eα(−5.70tα)


and

%∗ = −tα−1 (0.25Eα(−0.47tα) + 0.3613Eα(−5.70tα)) .

The state trajectories ζ∗ for α = 0.9 is shown in Figure
1 and the control trajectory %∗ is shown in Figure 2.

4 Conclusion
We have found the explicit formulation of optimal

control-state pairs for the linear quadratic optimization
problem subject to fractional order differential algebraic
system of Riemann-Liouville type. The optimal control-
state pairs is stated in terms of Mittag-Leffler function.
An example illustrating the optimal control-state pairs
has been presented.
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