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Abstract

In this article, the linear quadratic optimization prob-
lem subject to fractional order differential algebraic sys-
tems of Riemann-Liouville type is studied. The goal of
this article is to find the optimal control-state pairs sat-
isfying the dynamic constraint of the form a fractional
order differential algebraic systems such that the linear
quadratic objective functional is minimized. The trans-
formation method is used to find the optimal control-
state pairs for this problem. The optimal control-state
pairs is stated in terms of Mittag-Leffler function.
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1 Introduction

Recently, many issues in the physical field have used
the optimal control theory for problem solving. This
information can be found in literatures such as [Frank
et all, 2016], [Melendez and Santos, 2017], [Arafa et all,
2017], [Anbarasi and Kanthalakshmi, 2016]. As re-
ported in [Frank et all, 2016], the optimal control theory
is applied for a complex atomic quantum system.

The linear quadratic optimization for fractional order
differential algebraic systems is a specific optimal con-
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trol problem of the following form:

1

min J (0,) = / (C.Q0) + (e.Ra)) dt, (1)

0
st (EDf —A)C=Bo, C0)=Cp, @
where (-,-) denotes inner product of two vec-
tors, ( =((t) € R™ denotes state, o= p(t) €

R" denotes control, £, A € R™*" with rank(E) < n,
B € R™" @ and R are symmetric positive defi-
nite matrices. In the dynamic constraint (2), Dy de-
notes the fractional derivative operator of order o, o €
(m —1,m) with m € N. The dynamic constraint in
equation (2) is called a fractional differential algebraic
system [Muhafzan et all, 2019]. It can be proved that
the solution of fractional differential algebraic system
(2) exists if det (s*E — A) # 0 for some s € C [Batiha
et all, 2018]. The dynamical system of this kind for the
matrix &£ = I has been discussed in [Khanduzi et all,
2020], [Evirgen, 2016] and [Evirgen, 2017]. Note that
for o = 1, the operator D' constitutes an usual deriva-
tive and this already studied in [Petrenko et all, 2020],
[Zulakmal et all, 2018] and [Muhafzan, 2010]. An appli-
cation of the optimal control problem (1) and (2) in me-
chanical descriptor system for o = 1 is given in [Muller,
1999].

It is well known that the problem to be solved in the
optimization problem (1) and (2) is to find the control-
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state pairs (o, ¢) satisfying the fractional dynamic con-
straint (2) such that the objective functional (1) is mini-
mized. To the best of the author’s knowledge, little work
has been done with the optimization problem (1) subject
to the fractional dynamic system (2). However, this is-
sue was discussed in [Chiranjeevi and Biswas, 2020] re-
cently, for which Dy is the fractional derivative operator
in terms of the Caputo.

In this paper we discuss the linear quadratic optimiza-
tion problem of infinite horizon subject to differential al-
gebraic system of fractional order of the following form:

mﬁjﬂﬂ@() :/(<CaQC>+<Q’RQ>)dt7 3)
0

st. (ED} — A)¢ = Bo, ((0) = (o, “

where Dy is the fractional derivative in terms of
Riemann-Liouville of order o € (0,1). The aim of this
paper is to find the control-state pairs (o, () satisfying
the fractional dynamic constraint (4) such that the ob-
jective functional (3) is minimized. The solving method
is to transform the linear quadratic optimization (3) and
(4) into the standard fractional linear quadratic optimiza-
tion. Using the theory for the standard fractional linear
quadratic optimization, we find the optimal control-state
pairs (g, ¢) for the optimization problem (3) and (4) for
which they are stated in a combination of the Mittag-
Leffler functions. Indeed the linear quadratic optimiza-
tion problem (3) and (4) constitutes an extension of the
linear quadratic optimization problem proposed in [Chi-
ranjeevi and Biswas, 2020]. Therefore the results of this
paper constitute a new contribution in the field of opti-
mization subject for fractional differential algebraic dy-
namic system. Moreover, this result can be also used to
extent the results in [Muller, 1999] on the linear mechan-
ical descriptor systems for fractional derivative of order
a, with a € (0, 1).

The rest of the paper is organized as follows. Section
2 considers some preliminaries information about the
Riemann-Liouville fractional derivative, Mittag-Leffler
function and fractional order differential equation sys-
tem. Section 3 presents the transformation process the
linear quadratic optimization problem subject to frac-
tional order differential algebraic system into the stan-
dard fractional linear quadratic optimization problem.
The main result of this article and a numerical example
illustrating the results is also given in section 3. Section
4 concludes the paper.

2 Preliminaries Information

There are several mathematical tools used in this study.
The following statement is the definition of the fractional
order Riemann-Liouville derivative and Mittag-Leffler

function. Let ¢ :[0,00) — R™ be an integrable function.
The Riemann-Liouville fractional derivative of order «
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witha € (m — 1,m), m € N, is defined by

t
1 am
- t _ mfafl d
Sy g | 7T
0

Di((t) =
®)

where I'(.) is the Euler Gamma function [Batiha et all,
2018]. One can easily find that the Riemann-Liouville
fractional derivative of order « € (m — 1,m), m € N
for a constant function c is F(%fa) It is clear that such
a derivative is different from the usual derivative of a
constant function c.

The one parameter Mittag-Leffler function is defined
by

= —_— P} C ) 6
TG ©

where 3 > 0 [Batiha et all, 2018], [Evirgen and
Ozdemir, 2011]. One can replace variable z in (6) by
Az for an arbitrary square matrix A, such that

= AV
Eg(Az) =) —F——. )
P49 = 2 w55
It is easy to see that
= Al Al
&1(Az) = = = Az). (8
49 =3 gy = L oA ®

The two parameters Mittag-Leffler function for Az was
given by:

> Al
Ep - (Az) = ©
o JZFJB+7

where 8,y > 0. Itis clear that £5 1 (Az) = Eg(Az). The
Mittag-Leffler function (6) and (9) are convergent series
[Batiha et all, 2018].

The Mittag-Leffler play an important role in solving
the system of the following fractional differential equa-
tions:

D¢ =AC+0, ((0)=(o, 0 < <1, (10)
where Dy is the Riemann-Liouville fractional derivative.
Using the Laplace transformation one can easily prove
the following theorem.

Theorem 1. [Hristova et all, 2020] The solution of sys-
tem (10) is

t

C(t):taflr‘:a(Ata)Co+/(t*5)‘171504,&(/1#)9(5)0[8,
’ (11)
fort €10,T).
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3 Transformation and Solution

Reconsider the linear quadratic optimization problem
(3) and (4). A control-state pair (g, ¢) is called admis-
sible for the optimization problem (3) and (4) if it satis-
fies the constraint (4) for an initial state {5 € R™ and
J(0,{) < oo. A control-state pair (o*,(*) is called
an optimal control-state pair for the optimization prob-
lem (3) and (4) if it is an admissible and 7 (o*,(*) =
min J (g, (). Let us define the admissible control-state
pairs set for the optimization problem (3) and (4) by

Y 2 {(0,¢)] (0,¢) is continuous satisfies (4)
and 7 (0,¢) < oo}

The problem under consideration is how the explicit
formulation of the optimal control-state pairs (¢*,(*) €
) such that

J(e"¢") :mgin J(0,¢)- (12)

First of all, let us transform the linear quadratic opti-
mization problem (3) and (4) into the standard fractional
linear quadratic optimization problem. For this purpose,
we adopt the Definition 1 in [Fang et all, 2014] and the
Singular Value Decomposition(SVD) Theorem [Klema
and Laub, 1980] to find a restricted system equivalent
(r.s.e.) to the system (4).

Definition 1. A fractional order differential algebraic
system

(EDy — A4) ¢ = Be, {(0) =Gy
is said to be a restricted system equivalent (r.s.e.) to the
system (4) if there exist two nonsingular matrices U,V €
R {uch that UEV = E,UAV = A, UB = B and
¢=Vc¢.

Obviously, the restricted system equivalence is an
equivalent relationship and it is consistent with Defini-
tion 1 in [Fang et all, 2014] for the standard differential
algebraic systems.

Let rank(E) = p < n. Base on the Singular Value De-
composition(SVD) Theorem [Klema and Laub, 1980],
there exist the nonsingular matrices U, V' € R"*™ such
that

UEV = diag(I,,0), (13)
where I, is an identity matrix of size p x p and O is a

zero matrix. Using these U and V' matrices, we have the
following fractional order differential algebraic system

(st 0mr - [ 42 42]) 4] = [ 2] o
(14
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with ¢;(0) = (10, which is r.s.e. to the fractional dy-
namic constraint (4), where

A Ao | By| G| 1
{Azl AQJ =U4v, {BJ =UB, [@]‘V ¢
(15)

with A1; € RP*P, Bie RP*", (4 € RP and (39 =
[Ip O} U (p. Assume that the system (4) is impulse con-
trollable. One can observe that the transformation (13)
and (15) implies the system (14) is also impulse control-
lable, see [Zulakmal et all, 2018]. This is equivalent to

rank [Agg Bg] =n—p. (16)
Using the transformation V=1 = {gl } , the objective
2

function (3) can be replaced with

mmj (o, ¢ / ((C1,Q11C1) +2(C1, Q12G2)
0

+<<27Q22<2> <Q7 RQ>)dta (17)

where [Q#l Q12} =VTQV withQ1, € RP*P, Q5 €
12 Q22

RP*("=P) and Qqge € R("~P)X(n=P) Using the condi-
tion (16), the solution of equation (14) is

<= rnfg]

c R(n—p+r)><r
and AT =

for some full rank matrix @
with & eker[Agg BQ], v € R"

-1
[Azz BQ]T ([Azz Bz] {AQTQ}) is the generalized
By

inverse of the matrix [Agg Bg} . Using the expression
(18), the following transformation is created:

G
| _[ 5 O][a
CQ o |:ATPA21 (I):l |:V:| ’ (19)

4

By substituting (19) into (17), we obtain the following
linear quadratic optimization problem:

min 7 (v.,) = / G Q) +2(G, Quav)
0
+ (v, Qov)) dt, (20)
s.t. (Df — A) ¢ = Bv, (1(0) = (o,
where

A=An —[An Bi] ATAyy, B=[A1n B1] @,
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Qi1 = Qi + (AT, T [Q022 g} At Ay,
Qi2=[Q120] @ — (ATAy) T [QOzz g} P,
Qu=20" {QOH} -o' {ng }OJ AT Ay,

Qu =7 {QO” g} . @1
One can see that the linear quadratic optimization prob-
lem (3) and (4) is equivalent to the standard linear
quadratic optimization problem (20) with the state (; and
the control v. Furthermore, the optimal control-state
pairs (0*, ¢*) can be found by solving the standard frac-
tional linear quadratic optimization problem (20).

One can observe that the positive definite assumption
of the matrix @ and R implies (2 in equation (21)
is also positive definite. Therefore, one can use the
theory in [Matychyn and Onyshchenko, 2018] and [Li
and Chen, 2008] regarding the standard fractional lin-
ear quadratic optimization problem. Using the results in
[Matychyn and Onyshchenko, 2018], the optimal state
pairs (v*,(7) for optimization problem (20) exists and
unique if

rank ([B | AB | ... | AP7'B]) =p.
The control that minimizes 7 (v, {;) is given by
vi=-Qx (@ + BTS), (22)

where the state (7 is the solution of the following frac-
tional differential equation:

(D —K)¢ =0, ¢1(0) = Cio, (23)

where K = A— BQy, (Q,+B " S) with S is the unique
positive definite solution of the following algebraic Ric-
cati equation:

ATS+SA+Qu—(SB+012)Q5, (SB+01)T = O.

(24)
Using the equation (11), the solution of equation (23) is
given by

G ()=t Ea (KtY) ro-

Likewise, using the transformation (15) and (19), the op-
timal control-state pairs (0*,(*) of the linear quadratic
optimization problem (3) and (4) is given by

H [N O] gl
“|o1 2
° - - Lo
INO] j{’ (I? I, :
O L] |7y g | [-Q2 (@ +BTS) |
vol| b
- oI A1_¢1Q221(Q12+B S) Clv
- LA - 2205, (Q, + BTS)
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or in a separate form given by

o =t (Az — P2Q55 (Q1y + BTS)) Ea(Kt)C10

(25)
and
C* :ta_lN[ *—1Ip*T T :|5a(’Cta)C107
A — 21Q5, (@12 + B'S)
(26)
A | it [
where {AJ — ATAy, ©= {@2}7 A €
R=P)xp Ay € R™P & e ROPIXT gpd
d, € R™X7,

One can see that the optimal control-state pairs is
stated in terms of Mittag-Leffler function.

In order to illustrate the results, let us consider the lin-
ear quadratic optimization problem (3) and (4) where the
matrices F, A, B, Q and R are given as follows:

(20 0 0 -1 0 1 0
01-10 -1 0-1 0
E= 0000"4_ 0-2 2 -1’
|00 00 1 2-10
(6 2 1 —7-4
0 1 1 —4-3
B= 3 @ = —7-425 15

1 —4-315 10

and R = 1 with the initial state is (o = [200 0] LT
is clear that p = 2. By taking the matrices

05 0 00 1 0 0 O
U= 0 0.707100 V= 0 0.7071 00.7071
10 0 01> ~ |0-0.707100.7071 |
0 0 10 0 0 1 1
we have
|20
UEV = [O O} .

It is easy to verify that rank[ Aoz B2 | = 2, thus the
fractional differential algebraic system (14) is impulse
controllable. By choosing

® = [ —0.4082 0.8660 0.2887] ' € ker [ Ass Bs],
the problem (3) and (4) can be equivalently changed
into the standard fractional linear quadratic optimization
problem (20) where ¢; € R?, v € R with

A —1.4167 —0.5303 B 0.7217
T 1 =0.1179 2.2500 |’ T T 0.2041 |’
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Figure 1. State trajectories for « = 0.9

control
P

Figure 2. Control trajectory for &« = 0.9

1] - 41 126.5721
G(0) = M » @ = [126.5721 392.500]
_ ~8.6603 | -
Q12 = {—28.1691] ) Q22 =3

Since rank([B | AB }) = p = 2, the control that mini-
mizes J (v, (;) is given by

v* = —[0.4397 32.7423] (,

where the state (] is the solution of the following frac-
tional differential equation:

o —1.7340 —24.1601 10
(Dt a {—0.2076 —4.4335 D G = M , @7)
with ¢;(0) = Ll)] , and the solution of the algebraic Ric-
cati equation (24) is given by the matrix

g - 14.4483 —2.1935
| —2.1935 626.9672

The solution of the fractional differential equation (27)
is

eie [[-17340 —24.1601] ) [1
Gal) =t 5“([0.2076 —14335 |" ) o

e 12 0.7581(—0.47)1 ey
0.0397(—5.70)7 2

T(jat+l)
_ o1 O.75815a(—0.47ta)
N 0.0397E,(—5.70t%) |’
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thus

Vo=t 32.7423 | | 0.0397&,(—5.70t%)
= —t71(0.336, (—0.47tY) + 1.36,(—5.70t)).

e e [ 0.4397 T [0.75816’@(—0.47150‘)

Using (25) and (26) we find

0.76E,(—0.47t%)
o= jo1 —0.54E,(—0.47t*) + 0.31&,(—5.70t*)
o —0.54E€,(—0.47t*) + 0.25E,(—5.70t*)
—1.43E,(—0.47t*) — 0.80&,(—5.70t%)
and

0% = —t 1 (0.256,(—0.47t%) + 0.3613E, (—5.70%)) .

The state trajectories (* for & = 0.9 is shown in Figure
1 and the control trajectory o* is shown in Figure 2.

4 Conclusion

We have found the explicit formulation of optimal
control-state pairs for the linear quadratic optimization
problem subject to fractional order differential algebraic
system of Riemann-Liouville type. The optimal control-
state pairs is stated in terms of Mittag-Leffler function.
An example illustrating the optimal control-state pairs
has been presented.
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