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Abstract
Cavity eigen functions for vector potential make it

possible to determine completely the differential equa-
tions for amplitudes of the fields induced by charged
particle traversing the cavity. For many accelerator
based applications such detailed description of cavity
excitation problem is not necessary. It is quite suffi-
cient to have expressions or equations for cavity volt-
age induced by the charge and its phase as well, max-
imum particle energy gain after RF cavity passage ex-
pressed in voltage unites being assumed as voltage am-
plitude. Usually, equivalent electrical circuit is used in-
stead of RF cavity to make appropriate calculation, sta-
bility analysis etc., resonance frequency, quality factor
and shunt impedance of the circuit being equal to ap-
propriate parameters of the RF cavity. In this paper,
the attempt is undertaken to associate cavity excitation
equations with beam charge and its velocity and cav-
ity shunt impedance as well, the deduction being made
on the basis of electrodynamics equations. It is shown
that complex shunt impedance concept is quite natu-
ral generalization of usual shunt impedance for electri-
cal charge-accelerating RF cavity interaction problem.
Both shunt impedance module and its phase can be cal-
culated or measured experimentally.
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1 Introduction
As a rule, intensities of modern RF accelerators are

sufficiently high in order to take into account a reverse
impact of accelerated beam on an accelerating element.
One says that beam-RF cavity interaction takes place
when electromagnetic fields induced by the beam in the
cavity are taken into account while calculating beam
dynamics. To analyze the processes resulting from this
interaction two approaches are used mainly. The first
one is based on Maxwell equations solving. Cavity

eigen functions for vector potential are found that to-
gether with differential equations for fields amplitudes
form the basis for following analysis. As a rule the ex-
pressions or equations for fields amplitudes are of in-
terest. These have to have an analytical representation
for right hand parts. Since these in turn are functionals
of cavity eigen functions that analytical solutions are
available for limited number of cavities forms this place
the practical limit of field based approach. In other ap-
proach mentioned the RF cavity is replaced with the
electrical circuit containing active resistance, capaci-
tance and inductance, their values are chosen in such
a way to have the resonance frequency, quality factor
and shunt impedance the same for the RF cavity and
for the circuit. In this approach one has an analytical
representation so necessary for analysis but the ques-
tions concerning approach justification and some un-
certainness arise. In this paper, we use strict approach
based on Maxwell equations to derive the expressions
for fields amplitudes induced by the charged bunch
traversing rf cavity. Transformations have been made
to express the formula for the voltage induced by the
bunch over cavity external parameters. Thus the equiv-
alence of both approaches has been strictly proved for
some cases at list. Similar approach based on Maxwell
equations is not known to the author. Complex shunt
impedance concept have been introduced and this ap-
peared be fruitful for beam-cavity interaction processes
description in RF accelerator based applications prob-
lems.

2 Electrodynamics of RF Cavity-Beam Interac-
tion

To find out the fields that induce moving charge in a
RF cavity, we will use the method that had been devel-
oped in [Lopukchin, 1953]. Vortex electrical E⃗(r⃗, t)

and magnetic H⃗(r⃗, t) fields are represented as deriva-
tives of vector potential A⃗(r⃗, t) on time and space co-



120 CYBERNETICS AND PHYSICS, VOL. 3, NO. 3, 2014

ordinates:

E⃗(r⃗, t) = −∂A⃗(r⃗,t)
∂t

H⃗(r⃗, t) = 1
µ0
rotA⃗(r⃗, t)

}
(1)

where µ0 is magnetic permeability of free space. Here
ant later SI units are used. Vector potential satisfies the
wave equation

∆A⃗(r⃗, t)− 1

c2
∂2A⃗(r⃗, t)

∂t2
= −µ0j⃗(r⃗, t) (2)

j⃗(r⃗, t) and c being current density and the light veloc-
ity, respectively.
To find out the expressions for vector potential we will

use the most direct way. Namely, we represent vector
potential as an expansion on the infinite sum of RF cav-
ity eigen functions A⃗(r⃗, t) with time dependent coeffi-
cients gλ(t):

A⃗(r⃗, t) =
∞∑
λ=1

gλ(t)A⃗λ(r⃗) (3)

with the boundary conditions (A⃗, n⃗) on cavity surface,
where n⃗ is normal to cavity surface.
Starting from the equation (2) and taking into account

(3) one can easily obtain the equations for cavity vector
eigen functions

∆A⃗λ(r⃗) + k2λA⃗λ(r⃗) = 0 (4)

and appropriate time dependent coefficients (fields am-
plitudes)

d2gλ(t)

dt2
+ ω2

λgλ(t) =

∫
V

j⃗(r⃗, t)A⃗λ(r⃗)dV (5)

Here kλ = ωλ/c are eigen values of boundary prob-
lems (4), the specific solutions for RF cavities are
called cavity modes, ωλ being the eigen angular fre-
quencies of appropriate modes. Integration in formula
(5) is assumed to be performed over cavity volume.
Last equation can be generalized up to the next one

d2gλ(t)

dt2
+
ωλ

Qλ

dgλ
dt

+ ω2
λgλ(t) =

∫
V

j⃗(r⃗, t)A⃗λ(r⃗)dV

(6)
if losses in cavity walls as well as electromagnetic
power flow over apertures in cavity surface are taking
into account. Here Oλ stands for cavity quality factor
for λ mode:

Qλ =
ωλWλ

Pλ
(7)

where Wλ is the electromagnetic energy in the mode
λ, stored in cavity volume and Pλ represents the total
RF power losses that besides ohm losses in cavity walls
includes the external losses due to cavity coupling with
external circuits. It I supposed that eigen functions are
normalized by the condition

∫
V

A2dV = µ0c
2 =

1

ϵ0
(8)

Here ϵ0 is electric permeability.
For the following analysis we will use the cavity ex-

citation in the form with small RF losses, and this has
no any influence on generality of results to be obtained.
Then, all calculations will be made for a single charged
particle with charge value q of zero dimensions in all
directions entering cavity at the moment t = 0 . In
such a case the total current density

j⃗(r⃗, t) = qv⃗(r⃗, t)δ(x, y, vt) (9)

where v⃗(r⃗, t) stands for particle velocity being assumed
constant within the cavity, and δ() is Dirac delta func-
tion, δ(0) = ∞ and δ(x) = 0 for all other x :

∞∫
−∞

δ(x)dx = 1 (10)

We suppose also the case that is the most interesting
for accelerator based applications– the particle moves
along cavity axis where

x = 0, y = 0.z = vt (11)

In such assumptions:

d2g(t)

dt2
+ ω2g(t) =

L∫
0

δ(z − vt)qvA(z)dz (12)

From here and to the paper end we omit mode indexes
that does lad to ambiguity. It follows from last relation
that

d2g(t)
dt2 + ω2g(t) = J(t)
J(t) = qvA(vt)η(t)η(L− vt)

(13)

were A(z) = Az(0, 0, z) and η() is Heaviside step
function, η(x) = 1 for all x ≥ 0 and η(x) = 0 for
x < 0 The solution of the equation (13) that satis-
fies initial conditions g(0) = ġ(0) = 0 (corresponding
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equal to zero electric and magnetic components of in-
duced field) can be represented in the form [Stepanov,
2006]:

g(t) =
1

ω

L/v∫
0

J(τ) sin(ωτ)dτ =
sin(ωt)

ω
J1−

cos(ωt)

ω
J2

(14)
Here

J1 =

L/v∫
0

J(t) cos(ωτ)dτ ,J2 =

L/v∫
0

J(t) sin(ωτ)dτ

(15)
Note that solution for field amplitude in the form (14)
is valid for time interval t > L/v.

3 Induced voltage over cavity external parameters
In accelerator based applications, such for example

as self consistent beam dynamics [Kurakin V. and Ku-
rakin P., 2012] or stability analysis [Kurakin, 2010],
voltages amplitudes and its phases on so called acceler-
ating gap are of value instead of details fields descrip-
tion. Now, we proceed to this for the problem under
discussion. First, let us find out probe particle with
charge e energy gain E after passage of the cavity as-
suming field amplitude being g(t) = a sin(ωt + ϕ),
where a is constant. One can derive easily:

E(ϕ) = e
L∫
0

E(z, t)dz = −e
L∫
0

ġ(t)A(z)dz =

− eaω
q cosϕJ1 +

eaω
q sinϕJ1

(16)

Representing rf cavity in the form equivalent thin gap
of zero length (accelerating gap) with applied rf volt-
age one can conclude that appropriate voltage ampli-
tude Um is equal to

Um =
Emax

q
=
aω

q
(J2

1 + J2
2 )

1/2 (17)

This can be expressed in terms of cavity shunt
impedance R and cavity quality factor Q0:

R =
U2
m

P 2
0

, Q0 =
ωW

P0
(18)

where P0 stands for cavity walls power losses and W
is electromagnetic energy stored in the cavity volume.

W =
ϵ0
2

∫
V

E2
mdV =

a2ω2ϵ0
2

(19)

Taking into account normalization condition one ar-
rives finally at relations

W =
a2ω2

2
, J2

1 + J2
2 =

R

Q0

ωq2

2
(20)

In beam-cavity interaction problem, electromagnetic
field in the cavity is the superposition of three compo-
nents. These is the electromagnetic field that external
RF generator excites in the cavity, and this generator
feeds cavity with rf power for charged bunches acceler-
ation. The second one is the field induced in the cavity
by the charge traversing it. At last, there is electro-
magnetic field induced in the cavity by all for-running
charges. One may consider that all these fields act inde-
pendently provided the charge does change its velocity
while traversing the cavity, and this is assumed. The
subject of our interest is the third source of RF fields.
Charge self action is noticeable for large charge value,
while one has to take into account RF generator fields
for the case when the generator is not isolated from the
power flow from the cavity, and this is not assumed. In
this paper, we concentrate our attention on the fields,
induced by preceding bunches and acting on the cur-
rently traversing cavity bunch.
With these remarks, let us calculate energy loss for the

particle traversing cavity filled with the field induced by
previous charge, both radiating charge and probe parti-
cle being spaced by time interval equal to period of rf
oscillations.

Elost = −ev
L/v∫
0

q̇(t)A(vt)dt =

−ev
L/v∫
0

L/v∫
0

J(τ)τ cos(ωt− ωτ)A(vt)dτdt

= − e
q (J

2
1 + J2

2 )

(21)

Together with last expression this gives

Elost = −eqω
2

R

Q0
(22)

In terms of thin gap this means that bunch with charge
q induces rf voltage of amplitude Um

Um =
qω

2

R

Q0
(23)

and rf phase π. Furthermore, taking into account field
damping we arrive finally at the expression for rf field,
induced by charged bunch on equivalent thin gap

U = −qω
2

R

Q0
exp(− ωt

2Q
) cos(ωt) (24)
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Very often, current value I averaged over RF period is
used instead of charge value

U = −πI R
Q0

exp(− ωt

2Q
) cos(ωt) (25)

Two last formulae show clearly that both induced volt-
age amplitude as well as induced RF voltage phase can
be expressed over cavity external parameters, namely
cavity shunt impedance , cavity quality factor Q0 and
coupling coefficient β = Q/Q0 − 1 In other words, in
electro dynamical approach detailed cavity description
is not required for the calculation the voltage induced
by charged bunch.
Of course, one might derive two last formula us-

ing electrical circuit approach but quit natural ques-
tion arises if similar approach reflects reality in beam-
cavity interaction process. The calculations have been
made can be considered as the equivalence of both ap-
proaches in this particular case of beam interaction with
any cavity acceleration mode.
In stored energy accelerator [Kurakin V. and Kurakin

P., 2012] the energy spread that arises from beam load-
ing effect might be compensated by additional cavity
installed on beam path. This cavity operates at the fre-
quency shifted by the value

∆ω

ω
=

Ulost

2πUm(N − 1)
(26)

where Ulost, Um and N are the energy (expressed in
Volt units) that charge induces on equivalent acceler-
ating gap, compensating cavity voltage amplitude and
number of bunches in bunches train respectively. It had
been shown by solving Maxwell equations that bunch
energy lost in accelerating cavity might be expressed
in terms of external parameters by expression similar to
formulae (23) for specific type of the cavity namely pill
box (cylindrical resonator) cavity. Here we can mani-
fest that the key conclusion of paper [Kurakin V. and
Kurakin P., 2012] is justified for any type of accelerat-
ing cavity.
For many accelerator based applications expression

(25) that links induced voltage with bunch charge value
and cavity external parameters is quit sufficient. It al-
lows to anybody to calculate induced voltage for any
charged bunch sequence as well as for any charge dis-
tribution within any bunch. Appropriate expression is
simply an appropriate sum as well as appropriate inte-
grals within bunch length that can be written for any
particular problem. Formula (25) is the key expression
for any particular application.

4 RF Cavity Complex Shunt Impedance Concept
As it has been shown, cavity external parameters al-

low to find out appropriate integral parameters of phys-
ical quantity, but these nothings say about real quanti-
ties values inside the cavity. In other words, one can

consider cavity as a black box while induced voltage
in defined above sense as this black box response un-
der external exposure, charged bunch in the case un-
der consideration. It is quite clear from formulae (14).
It follows that the phase of oscillations depends on
two quantities J1 and J2, and these two quite differ-
ent functionals can not be expressed over one quantity.
These parameters might be used for detailed descrip-
tion of beam-cavity interaction and the outlook on re-
lation (14) prompts to represent it in the form

g(t) = sinωt
ω J1 − cosωt

ω J2
= D

ω (sinωt sinψ − cosωt cosψ)
(27)

where

D = (J2
1 + J2

2 )
1
2 , sinψ =

J1
D

, cosψ =
J2
D

(28)

and formula for fields amplitude takes the form:

g(t) = −D
ω

cos(ωt+ ψ) (29)

Thus, the pare of quantities J1 and J2 or D and ψ is
needed for detailed description of beam-cavity interac-
tion, and this pare as it followed from formulae written
above might be considered as the real and imaginary
parts or the module and the phase of complex quantity:

D̂ = ReD̂ + iImD̂ = D exp iψ (30)

where i is imaginary unit. D is expressed over cavity
shunt impedance, and finally expression for field am-
plitude looks like

g(t) = −q

√
R

2ωQ0
cos(ωt+ ψ) (31)

It is often much more convenient to deal with complex
quantities keeping in mind that physical sense has its
real part. Then, denoting

Ẑ = R exp(i2ψ) (32)

we arrive at relation

g(t) = −Re

√
Ẑ

2ωQ0
exp iωt (33)

In these notations, it is quite natural to refer to Ẑ as
complex shunt impedance. Its module coincides with
usual cavity shunt impedance. To establish physical
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sense its phase let us rewrite expression (16) for energy
gain for the probe particle entering a cavity at t = 0
using ψ definition

U(ϕ) = aω
qvD(− cosϕ sinψ + sinϕ cosψ)

= aω
qvD sin(ϕ− ψ)

(34)

It follows from last expression that probe particle has
zero energy gain after cavity passage if enters the cavity
when field phase in the cavity is equal to ψ.
Complex cavity shunt impedance can be calculated for

any particular mode according formulae above or es-
tablished experimentally. To measure R and ψ the fol-
lowing experiment has to be done. RF cavity installed
on probe beam path is fed with power P . Cavity RF
phase is adjusted to have the maximum energy gainUm

at its exit. Appropriate combination (18) of values ob-
tained gives cavity shunt impedance module. Adjust-
ing phase shifter to position corresponding to zero en-
ergy gain at cavity exit one gets information concerning
phase ψ .
It is important to emphasize that the complex shunt

impedance concept arises from field approach in the
problem of beam-cavity interaction. It has not appro-
priate analogue at all in electrical circuit approach since
is connected with a real process in real RF fields with
real field pattern.

5 Conclusion
In electrodynamics of RF cavity-beam interaction

problem, the right side expressions for electromagnetic
fields amplitudes are the integrals of beam currents and
cavity eigen functions over cavity volume. This lim-
its these equations applications for those accelerator
based problems where explicit representation of right
side terms is needed. On the other hand, for many sim-
ilar problems integral quantities are of importance in-
stead of detailed ones. For our specific task this is the
RF voltage induced by moving charge inside a cavity.
The solution for this voltage has been obtained and this
one has been expressed in terms of cavity external pa-
rameters: cavity shunt impedance and quality factor. In
other words, the bridge has been thrown between elec-
tro dynamical and electrical circuit approach in beam-
cavity interaction problem.
It has been shown, that two external parameters

are needed instead single one, called cavity shunt

impedance, in order to have explicit expression for in-
duced amplitudes and thus to have explicit expressions
for fields distribution inside a cavity. The concept of
complex shunt impedance has been introduced to the
problem under attention, and solution for field ampli-
tude had been expressed in terms of this cavity pa-
rameter. The physical sense both for the module and
the phase as well of complex shunt impedance has
been clarified. The first one is simply cavity shunt
impedance in widely used sense, while the other fixes
the phase at which the probe particle, entering cavity,
traverses it without additional energy gain. It had been
shown, that complex shunt impedance components can
be calculated or measured experimentally.
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