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Abstract
By means of a version of the implicit function theo-

rem for directionally continuous functions we establish
the existence, uniqueness and the asymptotic stability
of periodic solutions of aT -periodically perturbed au-
tonomous system bifurcating from aT -periodic limit
cycle of the autonomous unperturbed system (Malkin’s
problem). The main point of this method is the scaling
of the state variables in a suitably defined map whose
zeros areT -periodic solutions of the perturbed system.
In order to define this map we introduce a projector by
means of a convenient change of the state variables of
the unperturbed system. Finally, by applying to this
map the implicit function theorem mentioned before
we solve the Malkin’s problem without any reduction
of the dimension of the state space as it is done in the
literature.
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1 Introduction
Consider the perturbed autonomous system

ẋ = f(x) + εg(t, x, ε)

whereε > 0, g is T -periodic with respect to the first
variable and assume that the unperturbed autonomous
system

ẋ = f(x)

has aT -periodic limit cyclex0. LetPε be the Poincaré
map associated to the perturbed system, it is easy to
see that the derivative ofP0(x0(θ)) − I is singular,

for any θ ∈ [0, T ], this fact does not allow the em-
ploy of the implicit function theorem for studying ex-
istence, uniqueness and stability of the fixed points
of Pε bifurcating fromx0([0, T ]). On the other hand,
P ′0(x0(θ)) − I normally is a nonzero matrix and so
the classical averaging method, i.e. the Bogolubov’s
second theorem, does not allow to carry out this kind
of analysis either. Existence, uniqueness and stability
of fixed points ofPε bifurcating fromx0([0, T ]) has
been studied in classical papers [Malkin, 1949], [Loud,
1959] and [Blekhman, 1971, p. 186-202] by means
of the Lyapunov-Schmidt reduction which permits to
apply implicit function theorem to reduce the system
under consideration to a one-dimensional equation for
which the averaging method can be applied. In this pa-
per, by a suitable scaling of the state variables, we in-
troduce a map̂Pε(v)1 having the same fixed points as
Pε(v) and whose derivative is(v, ε)-directionally con-
tinuous with respect to a suitable cone at the points of
x0([0, T ]). The directional derivativêP ′0(x0(θ)) − I
turns out to be not necessarily singular and it is related
to the derivative of the perturbation term. For such a
map we propose an implicit function theorem which
permits to study existence, uniqueness and stability of
fixed points ofP̂ε bifurcating fromx0([0, T ]) without
any reduction of the dimension of the state variables.
This method simplifies considerably the work done in
the papers by Malkin, Loud and Blekhman. (The talk
will also present a comparison of our results with those
of the previous cited authors). The paper is organized
as follows: in Section 2 after some preliminaries we
precise the problem that we want to tackle and the re-
sults that solve it. Finally, the appendix collects the
proofs.

1Indeed we introduce the mapF (v, ε) = bPε(v)− v.



2 Results
Consider the function

Φ(v, ε) = P (v) + εQ(v, ε), (1)

whereP ∈ C2(Rn,Rn), Q ∈ C1(Rn × R,Rn) and
ε > 0 is a small parameter. Assume the following con-
ditions.

(P1) P

((
θ

0n−1×1

))
= 0 for any θ ∈ [−δ, δ],

whereδ > 0 is sufficiently small and0n−1×1 is
then− 1-dimensional zero vector,

(P2)

(
0

Rn−1

)
is an invariant space ofP ′

((
θ
ξ

))

for anyθ ∈ [−δ, δ], ξ ∈ Bn−1
δ (0).

Here and in the followingBp
r (x0) denotes the ball in

Rp centered atx0 of radiusr.
FunctionsP with this properties appear in a natural
way when we consider the system of ordinary differ-
ential equations

ẋ = f(x) (2)

with aT -periodic limit cyclex0. In fact, letP : Rn →
Rn be the Poincaré map associated to (1) over the pe-
riod T > 0, then it is known from the paper [Guck-
enheimer, 1975] that there exists a family of so-called
isochronous surfacesS(θ, ·) ∈ C1(Rn−1,Rn) which
transversally intersect the cycle having the following
properties.

1)
⋃

θ∈[−T/2,T/2] S(θ,Rn−1) ⊃ Vδ(x0([−T/2, T/2]))
for δ > 0 sufficiently small,

2) for anyv ∈ S(θ,Rn−1)
⋂

Vδ(x0([−T/2, T/2])) we
have thatP(v) ∈ S(θ,Rn−1).
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Figure 1. (a) Isochronous surfaces of the Poincaré mapP,

(b) isochronous surfaces of the mapeP,

Therefore, taking

P̃
((

θ
ξ

))
= S−1

(
P

(
S

((
θ
ξ

))))
,

for any θ ∈ [−δ, δ] and anyξ ∈ Rn−1 such that
(θ, ξ) ∈ Vδ(x0([−T/2, T/2])), see Fig. 1, we have that
the functionP (v) = P̃(v)−v satisfies properties (P1)-
(P2). Indeed, (P1) is obvious. To prove (P2) we ob-
serve that

P̃ ′
((

θ
ξ

))(
0
ζ

)
+ o(ζ) = P̃

(
θ

ξ + ζ

)
− P̃

(
θ
ξ

)
,

for any ξ, ζ ∈ Bδ(0). Since the first component of

P̃
(

θ
ξ + ζ

)
− P̃

(
θ
ξ

)
is zero by the definition of̃P

then the first component of

P̃ ′
((

θ
ξ

))(
0

ζ/‖ζ‖
)

+
o(ζ)
‖ζ‖ (3)

is zero as well. On the other hand for anyh ∈ Rn−1,
‖h‖ = 1, there existsζk/‖ζk‖ → h as k → ∞
hence from (3) we obtain that the first component of

P̃ ′
((

θ
ξ

))(
0
h

)
is zero for anyh ∈ Rn−1, ‖h‖ = 1.

Therefore, for anyξ ∈ Bn−1
δ (0) andθ ∈ [−δ, δ] the

map P̃ ′
((

θ
ξ

))
maps

(
0

Rn−1

)
into itself. There-

fore, we haveπP (v)(I − π) = πP̃(v)(I − π) = 0
for anyv ∈ Bn

δ (0), and so (P2), whereπ is a projector
defined as follows

πh =
(

h1

0n−1×1

)
, (4)

FunctionQ appears in (1) when we perturb (2) as fol-
lows

ẋ = f(x) + εg(t, x, ε), (5)

whereg is T -periodic with respect to the first variable.
Therefore, the problem of the existence and uniqueness

of zerosvε of Φ near the set

(
[−δ, δ]
0n−1×1

)
is equivalent

to the problem of the existence and uniqueness ofT -
periodic solutionsxε of (5) nearx0(t). Moreover, ob-
serve that if the real parts of eigenvalues ofΦ′v(vε, ε)
are negative then the associatedT -periodic solutionxε

is asymptotically stable.

This paper aims at obtaining sufficient conditions en-
suring that



(Φ1) there existsε0 > 0 such that for anyε ∈ (0, ε0]
there existsvε ∈ Rn such thatΦ(vε, ε) = 0 andvε → 0
asε → 0,

(Φ2) the real parts of eigenvalues ofΦ′v(vε, ε) are neg-
ative forε ∈ (0, ε0).

The classical method to solve this problem under as-
sumptions (P1)-(P2) is based on the Lyapunov-Schmidt
reduction (to a one-dimensional equation) and it was
completely developed in [Malkin, 1949], [Loud, 1959]
and [Blekhman, 1971, p. 186-202].
In this paper we propose an alternative method based
on the scaling of the state variables of a suitably de-
fined map, whose zeros are theT -periodic solutions of
the perturbed systems. This metod permits to avoid the
reduction of the dimension of the state space in order
to solve the problem. The proposed method consider-
ably simplifies the procedure required in the Lyapunov-
Schmidt reduction approach. A first result in this direc-
tion has been obtained by the authors in [Kamenskii,
Makarenkov and Nistri, 2008] by using the topological
degree theory, but this tool did not allow us to obtain
(Φ2). In this paper the approach is instead based on
a new implicit function theorem. The main idea is to
introduce the following auxiliary function

F (v, ε) = Φ(v, ε)− πΦ(v, ε) +
1
ε
πΦ(v, ε),

whereπ is the projector defined in (4), hence it pos-
sesses the following properties

πP ′
((

θ
0n−1×1

))
= 0, for any θ ∈ [−δ, δ],(6)

πP ′(v)(I − π) = 0, for any v ∈ Bn
δ (0). (7)

Following [Bressan, 1988] we give the following defi-
nition.

Definition 1. GivenM > 0, consider the cone

KM = {(v, ε) ∈ Rn × (0,∞) : ‖v‖ ≤ εM} . (8)

We say that a mapf : Rn × R → Rn is directionally
continuous with respect toKM at a point (v0, ε0) if
and only iff(vk, εk) → f(v0, ε0) for every sequence
(vk, εk) → (v0, ε0) with (vk−v0, εk−ε0) ∈ KM , k ∈
N.

For an application of directionally continuous selec-
tions of multivalued maps to the control theory we refer
to [Gorniewicz and Nistri, 1994].

FunctionsΦ andF are equivalent in the sense that

Φ(v, ε) = 0 if and only if F (v, ε) = 0.

The properties of the functionF can be now summa-
rized as follows.

Lemma 1. For anyM > 0 the functionsF andF ′v are
directionally continuous with respect to the coneKM

at (0, 0), provided thatF (0, 0) andF ′v(0, 0) are defined
as follows

F (0, 0) = (I − π)P (0) + πG(0, 0),
F ′v(0, 0) = (I − π)P ′(0) + πG′v(0, 0).

Lemma 2. Let {vε}ε>0 be a sequence of zeros ofΦ
such that(vε, ε) ∈ KM for some fixedM > 0 and any
ε > 0 sufficiently small. If the real parts of eigenvalues
of the matrixF ′v(0, 0) are negative then the real parts
of the eigenvalues of the matrixΦ′v(vε, ε) are also neg-
ative for anyε > 0 sufficiently small.

To obtain (Φ1)-(Φ2) it is now sufficient to show that the
conclusion of Lemma 1 implies that the assumptions of
Lemma 2 are satisfied. In turn Lemma 2 follows from
the following result, due to the authors, that is a mod-
ified version of the classical implicit function theorem
(see [Kolmogorov and Fomin, 1976, p. 492]).

Theorem 1. (Implicit function theorem for direction-
ally continuous functions). Assume that

1. There exists∆0 > 0, L > 0 such that‖F ′ε(0, ε) −
F ′ε(0, 0)‖ ≤ Lε for any0 < ε ≤ ∆0.

2. F (0, 0) = 0,
3. The functionsF andF ′v are directionally continu-

ous at(0, 0) with respect to the coneKM defined
in (8), wheneverM > 0, and the matrixF ′v(0, 0)
is nonsingular.

Then there exist∆ ∈ (0, ∆0) andM > 0 such that for
any0 < ε ≤ ∆ the equation

F (v, ε) = 0

has a unique solutionv = V (ε) in the εM -
neighborhood of0 ∈ Rn. Moreover, the functionV
is continuous at0.

3 Conclusion
We have proposed a new approach to study the bifur-

cation of asymptotically stable periodic solutions from
an isolated cycle. This approach turns out to be sim-
pler with respect to the classical Lyapunov-Schmidt re-
duction, it can be also applied to study the existence
of bifurcation of asymptotically stable periodic solu-
tions from families of periodic solutions and nondegen-
erate cycles of Hamiltonian systems. However, it does
not provide new physical understanding, but it simpli-
fies the mathematical analysis of those physical prob-
lems for which the Lyapunov-Schmidt reduction is em-
ployed as, for instance, the synchronization problems
(see [Blekhman, 1971]).



Acknowledgements
The first author is partially supported by the RFBR

Grant 06-01-72552. The second author is partially
supported by the Grant BF6M10 of Russian Federa-
tion Ministry of Education and CRDF (BRHE) and by
the President of Russian Federation Young PhD Stu-
dent grant MK-1620.2008.1. The third author acknowl-
edges the support by INdAM-GNAMPA and the Na-
tional Research Project PRIN ”Mathematical Control
Theory: Controllability, Optimization, Stability”.

References
Blekhman, I. I. (1971)Synchronization of dynamical

systems. Izdat. Nauka. Moscow.
Bressan, A. (1988) Directionally continuous selec-

tions and differential inclusions.Funkcial. Ekvac, 31,
pp. 459–470.

Demidovich, B. P.(1967)Lectures on the mathematical
theory of stability. Izdat. Nauka. Moscow.

Gorniewicz, L. and Nistri, P. (1994) An invariance
problem for control systems with deterministic uncer-
tainty. In “Topology in Nonlinear Analysis”, Banach
Center Publications,35, pp. 193–205.

Guckenheimer, J. (1975) Isochrons and phaseless sets.
J. Math. Biol., 1, pp. 259–273.

Kamenskii, M., Makarenkov, O. and Nistri, P. (2008)
A continuation principle for a class of periodically
perturbed autonomous systems.Math. Nachr.281,
pp. 42–61.

Kolmogorov, A. N. and Fomin, S. V. (1976)Elements
of the theory of functions and functional analysis.
Fourth edition, revised. Izdat. Nauka. Moscow.

Loud, W. S. (1959) Periodic solutions of a perturbed
autonomous system.Ann. of Math.70, pp. 490–529.

Malkin, I. G. (1949) On Poincaré’s theory of periodic
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Appendix A Proofs
Proof of Lemma 1. To prove thatF is directionally
continuous at(0, 0) with respect to the coneKM it

is enough to show that
1
ε
πP (vε) → 0 asε → 0. In-

deed, taking into account (6), we have that
1
ε
πP (vε) =

1
ε
πP (vε) − 1

ε
πP (0) =

1
ε
πP ′(0)vε +

o(vε)
ε

→ 0 as

ε → 0.
Analogously, to prove thatF ′v is directionally contin-

uous at(0, 0) with respect to the coneKM it is enough

to show that
1
ε
πP ′(vε) → 0 as ε → 0. For this,

using (7) we have that
1
ε
πP ′(vε) =

1
ε
πP ′(vε)π =

1
ε
π(P ′(vε) − P ′(0))π = πP ′′(0)π

vε

ε
+

o(vε)
ε

. But

(6) implies thatπP ′′(0)π = 0 and thus the proof is
complete. ¤

The proof of Lemma 2 is contained in an implicit

way in Malkin [Malkin, 1949], Loud [Loud, 1959]
and Blechman [Blekhman, 1971, p. 186-202]. For the
reader convenience we provide in the sequel an explicit
proof of Lemma 2.

Proof of Lemma 2. Let Γ ⊂ C be a circumference
centered at0 and containing none of the eigenvalues
of P ′(v0) different from0. SinceΦ′v(vε, ε) → P ′(v0)
then for anyε > 0 sufficiently small the real parts of
all then− 1 eigenvalues ofΦ′v(vε, ε) belonging to the
exterior ofΓ are less than zero. Thus, it remains to de-
termine the sign of that eigenvalue ofΦ′v(vε, ε) which
belongs, forε > 0 sufficiently small, to the interior of
Γ. Denote this eigenvalue byλε and letlε be the asso-
ciated eigenvector of unitary length, hence

Φ′v(vε, ε)lε = λεlε. (9)

Clearly, λε → 0 and lε →
(

+1
0n−1×1

)
or lε →

( −1
0n−1×1

)
asε → 0. Without loss of generality as-

sume that andlε →
(

+1
0n−1×1

)
.

Now observe that

F ′v(vε, ε) = Φ′v(vε, ε)− πΦ′v(vε, ε) +
1
ε
πΦ′v(vε, ε)

and using (9) we get the following identity

πF ′v(vε, ε)lε =
1
ε
λεπlε, (10)

for any ε > 0 sufficiently small. Sinceπlε →(
+1

0n−1×1

)
, then from (10) we have that

λε

ε
→ a ∈

R, asε → 0 such that

πG′v(0, 0)
( ±1

0n−1×1

)
= a

(
+1

0n−1×1

)
.

Our assumptions imply thata < 0 and taking into ac-
count thatε is positive, we obtain thatλε < 0 for ε > 0
sufficiently small. ¤

Proof of Theorem 1.Let

Aε(v) = v − [F ′v(0, 0)]−1
F (v, ε).

The equationAε(v) = v is equivalent to the equation
F (v, ε) = 0. We claim that for any∆ ∈ (0, ∆0) suf-
ficiently small the mapAε with 0 < ε ≤ ∆ maps the
ball ‖v‖ ≤ εM into itself.



For this, we evaluate‖Aε(0)‖. We have

‖Aε(0)‖ ≤
∥∥∥[F ′v(0, 0)]−1

∥∥∥ ‖F (0, ε)‖ =

=
∥∥∥[F ′v(0, 0)]−1

∥∥∥ ‖F (0, ε)− F (0, 0)‖ ≤

≤
∥∥∥[F ′v(0, 0)]−1

∥∥∥ Lε,

for any0 < ε ≤ ∆0.

Put M = 2
∥∥∥[F ′v(0, 0)]−1

∥∥∥ L̇ and evaluate the norm

of the map(v, ε) 7→ (Aε)′(v) on KM . To this end,
consider

(Aε)′(v) = I − [F ′v(0, 0)]−1
F ′v(v, ε)

= [F ′v(0, 0)]−1 [F ′v(0, 0)− F ′v(v, ε)].

Since of(v, ε) 7→ F ′v(v, ε) is directionally continuous
at (0, 0) with respect toKM we can find∆ ∈ (0, ∆0)
such that

‖(Aε)′(v)‖ ≤ 1
2
,

for anyv satisfying‖v‖ ≤ εM, and0 < ε ≤ ∆. There-
fore,

‖Aε(v)‖ ≤ ‖Aε(0)‖+ ‖Aε(v)−Aε(0)‖ ≤
≤ 1

2
Mε + sup

0≤θ≤1
‖(Aε)′(θv)‖ ‖v‖ ≤

≤ 1
2
Mε +

1
2
Mε = Mε.

Summarizing, we have that for any0 < ε ≤ ∆ the map
Aε maps the closed ball‖v‖ ≤ εM into itself and it is
a contraction on this ball. Thus, there exists a unique
fixed pointv∗ = V (ε) of Aε in this ball, that is

v∗ = v∗ − [F ′v(0, 0)]−1
F (v∗, ε),

or, equivalently,F (v∗, ε) = 0.
Since for any0 < ε ≤ ∆ we have that‖V (ε)‖ ≤ εM

thenV (ε) → 0 asε → 0. ¤


