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Abstract
The article is devoted to formalization of concept of

the solution for the differential equations of neutral
type with the generalized effect in the right part. The
concept of the solution is formalized by closure of the
set of smooth solutions in the space of functions of the
bounded variation. Sufficient conditions providing ex-
istence so the formalized solution are received. The
integral equation describing so the formalized solution
is received. Illustrating examples are resulted.
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1 Introduction
The numerous dynamic processes based on transfer

of mass, energy, information (for example, hereditary)
and etc., are accompanied by the presence of delay.
This delay can be caused by the most various rea-
sons - limitation of speed of spreading of interaction
(for example, an electric signal), presence inertance of
some elements (for example, inductance in electric cir-
cuits). The equations with a deflecting argument de-
scribe many processes with aftereffect. Such equations
appear, for example, when in a considered problem of
physical or technical character the force acting on a
mass point, depends on speed and position of this point
not only at present, but also at some preceding moment.
It is possible to give many examples of the dynamic
systems with a deflecting argument which meet in such
sciences, as biology, medicine, economic statistics, me-
chanics, etc. There is also a plenty of applications in
which the lagging argument is included not only into
a variable, but also in its derivative. These are so-
called difference-differential equations of neutral type.
For example, for a georadar the oscillatory processes

are described by linear periodic difference-differential
equation of neutral type. In the problems of control
as control effect the effects, reducing to the spasmodic
change of characteristics of dynamic process, can be
used. The questions of formalization of concept of
the solution for such systems, which dynamics is de-
scribed by the ordinary differential equations, were
considered in [Zavalishchin, S.T., Sesekin, A.N.,1991;
Zavalishchin, S.T., Sesekin, A.N..,1997; Bressan, A.,
Rampazzo, F.,1991; Sesekin, A.N. 2000; Miller, B.M.,
Rubinovich, E.Y.,2002]. The singularity of such sys-
tems is that in the right part of the differential equa-
tions there can be an incorrect operation of multi-
plication of discontinuous function on distributions
[Schwartz, L.,1950-1951]. One of approaches to the
overcoming noted incorrectness consists that it is of-
fered to take as the solution pointwise limit of smooth
solutions, generated by smooth approximations of the
generalized effects entering into the right part of the
differential equation. Such approach, according to
[Krasovskii, N.N., 1968], is natural from the point of
view of the theory of optimal control. In papers [Feti-
sova, Y.V., Sesekin, A.N. 2005; Fetisova, J.V., Sesekin,
A.N. 2009; Sesekin, A.N., Fetisova, J.V. 2010] this ap-
proach has been spreaded to the differential equations
with the constant and distributed delay. For one class of
the differential equations of neutral type this approach
to formalization of the discontinuous decision has been
considered in [Fetisova, J.V., Sesekin, A.N. 2009]. In
the given paper we will lead development of the ap-
proach connected with closure of set of smooth deci-
sions in space of functions of the bounded variation on
more general class of the differential equations of neu-
tral type.



2 The first variant of differential equation of neu-
tral type

Consider the following Cauchy problem

ẋ(t) = f(t, x(t), x(t− τ)) + Q(t, x(t))ẋ(t− τ)

+B(t, x(t)) v̇(t), (1)

x(t) = ϕ(t), t ∈ [t0 − τ, t0].

Heret ∈ [t0, ϑ], x(t) andv(t) are respectivelyn- and
m-vector functions of time,f(t, x, y) is an n-vector
function, andB(t, x), Q(t, x) are ann × m, n × n
andn × n matrix function,v(·) ∈ BVm[t0, ϑ], where
BVm[t0, ϑ] denotes Banach space ofm-vector func-
tions of bounded variation,τ > 0 is a constant delay,
ϕ(t) is an initialn−vector function of bounded varia-
tion.
Assume thatf(·, ·, ·) is measurable int, continuous
in rest variables and Lipschitz inx, B(·, ·), Q(·, ·)
are continuous and Lipschitz in the second vari-
able on the set{t ∈ [t0, ϑ], ‖x‖ < ∞} where‖x‖ =
( n∑

i=1

|xi|2
)1/2

, and satisfy to the following standard

conditions in the same set:

‖f(t, x, y, v)‖ ≤ κ(1+‖x‖), ‖Q(t, x)‖ ≤ κ(1+‖x‖),

‖B(t, x)‖ ≤ κ(1 + ‖x‖),

whereκ is some positive constant.
Let us choose two sequences of absolutely contin-

uous functionsvk(t), ϕk(t), k = 1, 2, . . . point-
wise converging tov(t) ∈ BVm[t0, ϑ] and ϕ(t) ∈
BVm[t0, ϑ] respectively. According to [Kolmanovskii,
V., Myshkis, A. 1992] the solution of Cauchy prob-
lem (1) exists for every absolutely continuous func-
tions vk(t) and ϕk(t) (the functionsv(t) and vk(t),
k = 1, 2, . . . satisfy the constraintvar

[t0, ϑ]
v(·) ≤ a). Let

x(t) = xk(t) is a solution of Cauchy problem (1) with
vk(t), ϕk(t).
Definition 1. A vector function of bounded variation

x(t) is called theapproximable solutionof Cauchy
problem(1), if x(t) is the pointwise limit of the se-
quencexk(t), k = 1, 2, . . . generated by sequences
vk(t), ϕk(t) andx(t) does not depend on the choice of
vk(t) andϕk(t).
Theorem 1. Let all the conditions given above are

satisfied. Moreover we assume there exist the partial
derivatives∂bij , ∂xν of elements of the matrix function

B(·, ·) and∂qij , ∂xν of elements of the matrix function
Q(·, ·), which satisfy the following equalities

n∑
ν=1

∂bij(t, x)
∂xν

bνl(t, x) =
n∑

ν=1

∂bil(t, x)
∂xν

bνj(t, x),

n∑
ν=1

∂qiµ(t, x)
∂xν

qνη(t, x) =
n∑

ν=1

∂qiη(t, x)
∂xν

qνµ(t, x),

n∑
ν=1

∂qiµ(t, x)
∂xν

bνl(t, x) =
n∑

ν=1

∂bil(t, x)
∂xν

qνµ(t, x)

(Frobenius condition)i, µ, η = 1, 2, ..., n; j, l =
1, 2, ..., m.
Then for any vector function of bounded variation

v(t) there exists the approximable solutionx(t) of (1),
which satisfies to the integral equation

x(t) = ϕ(t0) +

t∫

t0

f(ξ, x(ξ), x(ξ − τ)) dξ

+

t∫

t0

Q(ξ, x(ξ)) dxc(ξ) +

t∫

t0

B(ξ, x(ξ)) dvc(ξ)

+
∑

ti≤t, ti∈Ω−

S(ti, x(ti − 0), ∆x(ti − 0))

+
∑

ti<t, ti∈Ω+

S(ti, x(ti),∆x(ti − τ + 0)),

+
∑

ti≤t, ti∈Ω−

S(ti, x(ti − 0),∆v(ti − 0))

+
∑

ti≤t, ti∈Ω+

S(ti, x(ti − 0),∆v(ti + 0))

Herevc(ξ) is the continuous part of the functionv(ξ)
andxc(ξ) is the continuous part of the functionx(ξ),

S(t, x(t), ∆x(t− τ)) = z(1)− x(t),



ż(ξ) = Q(t, z(ξ))∆x(t), z(0) = x(t),

S(t, x(t),∆v) = z(1)− x(t),

ż(ξ) = B(t, z(ξ))∆v(t), z(0) = x(t),

Ω−(Ω+) is the set of points at whichv(t) is discon-
tinuous from the left (from the right).Ω−(Ω+)is union
of points of left (right) discontinuous of initial function
ϕ(t) and points ofΩ−, Ω+ shifted to the right into a
finite number (integer for points ofΩ−,Ω+) of delays
τ ; these points fall in[t0, ϑ].

∆v(t−0) = v(t)−v(t−0), ∆v(t+0) = v(t+0)−v(t)

∆x(t−0) = x(t)−x(t−0), ∆x(t+0) = x(t+0)−x(t)

Proof. Let apply the step method to the equation (1)
[Kolmanovskii, V., Myshkis, A. 1992].In this case the
functionẋ(t−τ) is known function at each step. There-
fore it is possible apply the corresponding theorem for
differential equations with delay and generalized effect
in the right part from [Fetisova, Y.V., Sesekin, A.N.
2005] to the equation (1); the justification of Theorem
1 follows from this theorem.

3 The second variant of differential equation of
neutral type

Now consider the following Cauchy problem

ẋ(t) = f(t, x(t), x(t−τ))+G(t, x(t−τ))ẋ(t−τ),
(2)

x(t) = ϕ(t), t ∈ [t0 − τ, t0].

Here the vector-functionf(t, x, y) satisfies the same
hypothesis from previous section.G(t, x) is continuous
n× n matrix of variablest andx and satisfy to restric-
tion

‖G(t, x)‖ ≤ κ(1 + ‖x‖),

Moreover we assume there exist the partial derivatives
∂gij/∂xν of elements of the matrix functionG(t, x),
that satisfy to the following conditions:

n∑
ν=1

∂giµ(t, x)
∂xν

gνη(t, x) =
n∑

ν=1

∂giη(t, x)
∂xν

gνµ(t, x)

(3)

i, ν, µ, η = 1, 2, ..., n. If the condition (3) is realized,
then there exists a potential vector functionU(t, x)
such thatgij(t, x) = ∂ui(t,x)

∂xj
, wheregij(t, x) are the

elements of matrix G,ui(t, x) are the coordinates of
vectorU(t, x).
As generalized effecṫv(t) is missing, now we shall give
the following definition of solution of the problem (2).
Definition 2. A vector function of bounded variation
x(t) is called theapproximable solutionof Cauchy
problem (2), if x(t) is the pointwise limit of the se-
quencexk(t), k = 1, 2, . . . generated by a sequence
ϕk(t); ϕ(t) ∈ BVm[t0, ϑ] is the pointwise limit of the
sequenceϕk(t) andx(t) does not depend on the choice
of ϕk(t).
Theorem 2. Let all the conditions given above are sat-
isfied. Then for any initial function of bounded varia-
tion ϕ(t) there exists the approximable solutionx(t) of
(2), which satisfies to the integral equation

x(t) = ϕ(t0) +

t∫

t0

f(ξ, x(ξ), x(ξ − τ)) dξ

+U(x(t− τ)− U(x(t0 − τ)) (4)

Proof. In the first place we rewrite the differential
equation (2) for a sequence ofxk(t) in the integral form

xk(t) = ϕk(t0) +

t∫

t0

f(ξ, xk(ξ), xk(ξ − τ)) dξ

+

t∫

t0

G(ξ, xk(ξ − τ)) dxk(ξ − τ), (5)

wherexk(t) is an absolutely continuous solution gener-
ated by absolutely continuous functionsϕk(t). The so-
lutionxk(t) is constructed by the step method in[t0, ϑ].
Using the condition (3) it follows that

t∫

t0

G(ξ, xk(ξ − τ)) dxk(ξ − τ)

can be written as

U(xk(t− τ))− U(xk(t0 − τ)).

So the equation (5) can be written into the form:

xk(t) = ϕk(t0) +

t∫

t0

f(ξ, xk(ξ), xk(ξ − τ)) dξ



+U(xk(t− τ))− U(xk(t0 − τ)) (6)

The convergent subsequencexki
(t) can be chosen from

the sequence ofxk(t) of bounded variation always.
The function U(t, x) is continuous in variables.So
passing to the limit aski → ∞ in the equation (6),we
get the limit of the subsequencexki(t) converges to
some functionx(t) that will be the solution of the equa-
tion (4).It is easily proved that the solution of the equa-
tion (4) is unique.This fact provides convergence of all
sequencexk(t) to x(t), the proof is completed.

4 Examples
Let’s give the following Cauchy problem

ẋ(t) = y(t) + x(t) ẋ(t− 1),
ẏ(t) = y(t)δ(t),

}
. (7)

the initial function is given by

ϕ(t) =
(

ϕx(t)
ϕy(t)

)
, (8)

where

ϕx(t) =

{
0, t = −1;

1, t ∈ (−1, 0].
, ϕy(t) = 1, t ∈ [−1, 0].

(9)
For the Cauchy problem (7) Frobenius condition from
the Theorem 1 is satisfied. The solution of Cauchy
problem (7) on the interval[0, 1] can be written as

x(t) = eχ(t) + e t χ(t), y(t) = eχ(t),

where

χ(t) =

{
0, t ≤ 0,

1, t > 0.

Now we consider the following Cauchy problem:

ẋ(t) = y(t) + y(t) ẋ(t− 1),
ẏ(t) = x(t)δ(t),

}
(10)

the initial function is given by (8), (9). The Frobe-
nius condition is broken for the Cauchy problem (10).
Not difficult to show that the various approximations
of functionsϕx(t) andδ(t) will lead to the limit of a
sequence ofxk(t) will depend on the method of ap-
proximation ofϕx(t) andδ(t).
Now give the example illustratingthe Theorem 2.
Now we consider the following Cauchy problem:

ẋ(t) = x(t− 1)ẋ(t− 1)

The initial function defined on[−1, 0] is

ϕ(t) = χ(t +
1
2
),

The potential functionU(t, y) has the form:

U(t, y) =
1
2
y2.

We can write the solution on[−1, 0] in the following
form:

x(t) = χ(t +
1
2
) +

1
2
χ(t− 1

2
)

5 Conclusion
Formalization of concept of the solution for one class

of the nonlinear differential equations of the neutral
type having great value for applied problems of im-
pulse optimal control is lead. Sufficient conditions of
existence of the solution are received and the integral
equation to which satisfies so the formalized solution
is established.
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