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Abstract 
Dynamics of two-section aerodynamic 

pendulum is studied. It is assumed that the flow 
acts upon only one section of the pendulum. 
Aerodynamic load is supposed to be quasi-
steady. All equilibrium positions are found, and 
their stability is analyzed. Numerical simulation 
is performed. Parameter ranges are found where 
periodical motions exist, as well as ranges where 
non-regular motions exist. Obtained results are 
in qualitative agreement with experimental data.  
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1. Introduction 
Investigation of interaction of solid bodies 

with the flow of resisting medium belongs to the 
range of classical problems of mechanics. 
Double aerodynamic pendulum is one of the 
simplest mechanical objects for which 
appearance of non-linear and chaotic oscillations 
is possible. On the other hand, steadily growing 
interest to usage of renewable energy sources, in 
particular, wind, encourages searching of new 
directions in construction of wind power 
generators. Double aerodynamic pendulum is 
one of perspective systems allowing convert 
wind energy into mechanic or electric power. 

2. Problem statement 
Consider the motion of a double aerodynamic 

pendulum (fig. 1) in horizontal plane . The 
pendulum is placed in flow of resisting medium 
[Gertsenstein, Dosaev, Nekrasov, 2004]. The 
flow speed is constant: . The first 
section (“thin” rod  of length ) can rotate 
about fixed vertical axis OZ . The moment of 

inertia of the rod about this axis is . The 
second section is connected to the rod with the 
joint  and consists of “thin” frame inside of 
which a plate is fixed. The plate width (chord) is 

, its area is  (fig. 1). Let m and  be mass of 
the second section and its moment of inertia 
about its center of mass  (
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that the flow only acts upon the plate, and this 
aerodynamic load of the flow can be reduced to a 
force that passes through the center of pressure 
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Figure 1 

 
The pendulum position is described by two 

angles: ϕ  is the angle between  and the first 
section, 

OX
ϑ  is the angle between  and the 

second section. Introduce also effective angle of 
attack 

OX

α , that is the angle between  and the 1O G



speed  of the center of pressure  with 
respect to the flow. Thus, state of motion of the 
pendulum is defined by angles (

CV C

,ϕ ϑ ), velocities 
(ϕ  and ϑ ) and pseudo-velocities , CVα . These 
variables are related by kinematical equations: 
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Here 1 ( )O C r α= . 
We will take into account only aerodynamic 

forces and neglect friction. Represent the 
aerodynamic force applied to the plate in the 
center of pressure C  as a sum of normal force 

 and tangential force : nF τF
2 21 1

2 2( ), ( )n C n CF SV C F SV Cτ τρ α ρ= = α , 
where ρ  is the medium density, ( )nC α  and 

( )Cτ α  are non-dimensional coefficients of 
normal and tangential forces. For description of 
the aerodynamic load we, like in [Samsonov, 
Sapounkov, 1996], use the quasi-steady model. 
That is, dependences of aerodynamic coefficients 
and of the center of pressure position r on α  are 
assumed to be the same as in the static case. 

Then motion equations of the system look as 
follows:  
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Equations (2) along with relations (1) form 
closed system. Equations for determining of 
equilibrium equations of this system are as 
follows: 
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Hence, the system has four equilibrium 
positions where both sections are directed 
parallel to the speed of the flow: 
( ) ( ) ( ) ( ) ( ) ( )0; 0; 0; Ct t t t t V tα ϑ ϕ ϕ ϑ≡ ≡ ≡ ≡ ≡ ≡

( ) ( ) ( ) ( ) ( ) ( ); 0; 0; Ct t t t t V tα ϑ π ϕ ϕ ϑ V≡ ≡ ≡ ≡ ≡ ≡
(5) 

( ) ( ) ( ) ( ) ( ) ( )0; ; 0; Ct t t t t V tα ϑ ϕ π ϕ ϑ V≡ ≡ ≡ ≡ ≡ ≡
(6) 

( ) ( ) ( ) ( ) ( ) ( ); ; 0; Ct t t t t V tα ϑ π ϕ π ϕ ϑ V≡ ≡ ≡ ≡ ≡ ≡
(7) 

Let us call the first equilibrium (4) the 
position «along the flow».  

3. Stability of equilibrium positions 
Introduce units of measurement so that the 

following equalities would be satisfied: 
1
21, 1, 1b V Sρ= = = . 

Study the character of stability of (4) in the 
first approximation with respect to disturbances 
of variables ( ) ( ) ( ) ( ), , ,t t t tϕ ϑ ϕ ϑ . Therefore, 
linearized the ODE system (1-2) and determine 
stability domains of the solution with the help of 
Hurwitz criterion. The linearized system looks as 
follows (the kinematical relations are taken into 
account):  
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Examine the structure of generalized forces 
forming right-hand sides of the system (8). First, 
discuss their part depending only on generalized 
velocities ,ϕ ϑ . Note that the coefficient at ϕ  in 
the second equation is equal to the coefficient at 
ϑ  in the first equation. Thus, this system does 
not contain gyroscopic forces. 

Now consider the “positional" part of the 
forces. Evidently, in the second equation the 
angle ϕ  is absent. The positional forces matrix is 
asymmetric, that is, non-conservative positional 
forces are present in the system. In this case the 
oscillatory (flutter) stability loss is possible.  

The necessary and sufficient criterion of 
stability of the equilibrium position “along the 
flow” looks as follows: 

1 1 1 1 2 0 2( )( )GI r I l ml l l r l 0− + + − >  (9) 
From the symmetry considerations it can be 

shown that equilibrium positions (5-7) are 
statically unstable. For solutions (5-6) the degree 
of instability is 1. For the solution (7), when both 
sections are directed “against the flow”, the 
degree of instability is 2.  

V
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4. Experimental investigations 
In the wind tunnel of the Institute of 

mechanics of the Lomonosov Moscow State 
University the tests with the double-section 
pendulum described in [Gertsenstein, Dosaev, 
Nekrasov, 2004] were performed. The diameter 
of the wind tunnel is 85cm. Pendulum 
dimensions are: first section length: 16 cm; 
second section length: 24 cm; plate chord: 7 cm; 
plate length: 31,5 cm; plate thickness: 0,9 cm. 
Moment of inertia of the first section: 5,31 g⋅m2, 
mass of the second section: 0,236 kg. 

In these tests, the changeable parameter was 
the distance L from the center of the plate to the 
joint . This parameter could take 6 different 
values. 

1O

The experiments were carried out at flow 
speeds from 5 to 15 mps.  

For large enough values of L the equilibrium 
position «along the flow» was stable. For smaller 
L equilibrium position along the flow is unstable. 
There were registered periodic motions where 
amplitude of ϕ  is much greater than amplitude 
of ϑ  (fig. 2a). For lesser L, another type of 
periodic motion was registered, where amplitude 
of oscillations of the second section is large (fig. 
2b).  
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Fig. 2 
For still smaller values of the parameter L, 

there were observed, in particular, long-periodic 
motions (close to stochastic ones) during which 
both sections can perform oscillations with large 
amplitudes (fig. 2c).  

5. Numerical integration of motion equations 
In parallel, equations (1-2) were integrated 

numerically. In these calculations the inertial and 
mass parameters of the pendulum [Gertsenstein, 
Dosaev, Nekrasov, 2004] were used. For the 
aerodynamic characteristics for the airfoil were 

taken experimental data [Tabachnikov, 1974] for 
NACA0012 wing with aspect ratio 8. Some 
results of the calculations for different values of 
the distance L from the center of the plate to the 
joint О1 are given in fig. 3. 

For large enough L the equilibrium position 
along the flow is stable (fig. 3a). From (9) it 
follows that for  this equilibrium 
becomes unstable. The Andronov-Hopf 
bifurcation takes place, and periodic motion 
appears (fig 3.b). It should be noted, that in this 
motion amplitude of 

1.32L ≈

ϕ  is much greater than 
amplitude of ϑ  (like in experiment). For lesser L 
there appears another type of periodic motion 
(fig. 3c). When L decreases further, the first 
periodic motion disappears (fig. 3d). Evidently, 
this second type of periodic motion is analogous 
to the experimental results (fig. 2b). This cycle 
changes its shape and position with decreasing of 
L (fig. 3c,d,e). For small L long-periodic motions 
appear that are close to chaotic ones (fig. 3f). 
The similar situation was registered in tests (fig. 
2c). 
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e) 0.71L =  f) 0.51L =  

 
Fig. 3 

Thus, the calculation results correspond 
qualitatively to the experimental data. 



It should be noted that all these motion types 
can be easily obtained in experiment by 
changing of the single design parameter, which 
makes this system very convenient for using in 
educational purposes (for example, in practicum 
for students). 

6. Conclusions 
Mathematical model of two-section 

aerodynamic pendulum is developed. All 
equilibrium positions are determined and their 
stability conditions are written. Behavior of the 
pendulum “in the large” is investigated.  

Experimental study of pendulum behavior is 
performed. The results of experiments are in 
good qualitative agreement with simulation. 

 
Acknowledgements 

The work is supported by RFBR (grants NN 
05-08-01378, 06-01-00079) and the Grant of the 
President of RF for support of young Russian 
scientists MK-9093.2006.01. 

References 
Gertsenstein S.Ya., Dosaev M.Z., Nekrasov I.V., 

Samsonov V.A. Practical work in mechanics. 
“Two-section weather vane in airflow”. 
Moscow: MSU Press, 2004. 20 p. 

 
Samsonov, V.A., Sapounkov G.J. Stability 

research of double pendulum construction in a 
flow. // Proceedings of the Fifth Conference 
of Cranes and Textile Machines. Gdansk. 
1996. P. 250-256. 

 
Tabachnikov, V.G. Stationary characteristics of 

wings for low speeds in the whole range of 
angle of attack. // Trans. of TsAGI. 1974. Vol. 
1621. P. 79-93. 
 


