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Abstract: Problems of nonlinear modelling, dynamic analysis, simulation of spatial motion
by a spacecraft with s flexible weak damping structure, are considered. The obtained results
on a multi-rate filtering measurements and a pulse-width modulation of the jet engine thrust,
simulation and animation of motion for the communication satellite with large-scale solar array
panels at modes of initial damping and guidance on the Sun and on the Earth, are represented.
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1. INTRODUCTION

For large-scale spacecraft (SC) the structure oscillations
can render an essential influence on its spatial motion, it
is especially for an initial mode after separation from a
launcher, and also at the SC initial guidance on the Sun
and on the Earth. Modern computer technology allows
to obtain a dynamic analysis and a video-display the SC
structure deformations during its spatial motion. That it
is very useful at a SC designing and flight support.

The SC Sesat (Fig. 1) with large-scale flexible solar array
(SAPs) panels was devel-

Fig. 1. The satellite Sesat

oped by ISS Reshetnev
Company (Russia) under
the contract with Eutelsat
and was removed on geo-
stationary orbit in April
2000. In the paper for this
type SC the spatial mo-
tion models are created
at a pulse-width modu-
lation (PWM) of control
by jet engines and the
SAPs’ bend-turning oscil-
lations, results on a con-
trol laws’ synthesis for the
initial modes, simulation
and animation both the

SC body and the SAPs motion, are presented.

2. MODELING A SATELLITE STRUCTURE MOTION

A lot of publications were devoted for a choice of dynamic
schemes, methods for deriving and research the flexible
SC motion equations, analytical reviews are well-known,
but the problem of development the effective methods for
modelling dynamics and imitation of the SC motion is
remained actual. At deriving the approximate models of
the flexible SC motion the Reley-Ritz-Galerkin method –
the method of the prospective oscillation forms, is most
known. At synthesis of the SC dynamic models with non-
rigid structure the method of fixed elements (MFE) is
? The work was supported by RFBR (Grant 08-08-00512) and by
Division on EMMCP of the RAS (Program 15).

widely applied. The MFE represents a located method of
prospective oscillation forms.

Having doubtless advantages

Fig. 2. The lowest tones

and advanced software (NAS-
TRAN, ASKA, SAP-IV etc.),
the MFE generates models
with rather high dimension
reaching several thousand on
degrees of freedom for com-
plex ramified spacecraft struc-
tures. Peculiarity of the ap-
plied approach consists in
presentation of the structure
elements’ flexible oscillations
by fixed number of tones.
Here calculation is carried
out by the MFE with condensation (reduction) on the
oscillation tones, the factor matrixes of interference for
motions of all sub-structure both rigid and deformable
bodies, are also calculated by computer. Own forms and
own partial frequencies of flexible oscillations by each SAP
for the SC Sesat was carried out taking into account
nq = 10 lowest tones in standard normalization, Fig. 2.

Design scheme of the SAPs’ first wing for spacecraft Sesat
is represented in Fig. 3) by the fixed-element model con-
sisting 129 main points where 33 points are the concen-
trated weights, and 205 beams with five various geomet-
rical and two various physical properties (Butyrin and
Somov, 2004).

The model of the angular motion dynamics by the space-
craft with active flexible SAPs was elaborated at assump-
tions
• position of the mass center for all mechanical system

have small differ from nominal position – a pole O at
derivation of nonlinear equations for system spatial
motion;

• the SAPs move according to command rate as piece-
constant time function that is caused by step-by-step
gear driver (SGD) with self-braking.

That model have the form



Fig. 3. The design scheme for the SAPs’ first wing of Sesat spacecraft by method of fixed elements
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Fq ≡ −(D q̇ + W q + (Dq
3(γ))

t γ̈).

(1)

Here ω = {ωx, ωy, ωz} is a vector of the SC angular rate in
the body reference frame (BRF) Oxyz, the inertia tensor
J = J(γ)=Jo + 2Jp(γ) at any position of the SAPs,
determined by a angle γ, and the inertia tensor for each
wing of the SAPs is as follows:

Jp(γ) =

 J
p
xC2

γ + Jp
y S2

γ Jpd
xy CγSγ 0

Jpd
xy CγSγ Jp

xS2
γ + Jp

y C2
γ 0

0 0 Jp
z

 ,
where Jpd

xy = Jp
x − Jp

y and Cγ = cos γ; Sγ = sin γ.
Rectangular matrix Dq(γ) of an inertial influence by the
SAPs and the SC body motions is represented by matrix-
line Dq = [Dq

1,D
q
2], and the structure of matrixes Dq

1 and
Dq

2 by flexible SAPs inertial influence is those: the matrix
Dq

k = {Dq
k1,D

q
k2,D

q
k3} is represented by column, where

Dq
kj is line. Here j = 1, 2, 3 is the line number and k = 1, 2

is the wing number. Then, G = J(γ) ω + H + Dq(γ) q̇
is vector of the flexible SC angular momentum where H
is vector of the gyro stabilizer’s own momentum and the
torque vector

Mp
o =

 (Jpd
xy (S2γωx − C2γωy)− 2Jp

z ωy) γ̇

−(Jpd
xy (C2γωx − S2γωy) + 2Jp

z ωy) γ̇

−2Jp
z γ̈


presents the inertial-gyroscopic forces, caused by the SAPs
activity. Vector q = {q1,q2} presents the generalized
coordinates of the SAPs flexible oscillations, qk ∈ Rnq

is vector of the same coordinates by k-th wing. Diagonal
matrix Ωk = diag{Ωks} is made from partial frequencies
Ωk s, s = 1:nq and δ is logarithmic decrement of the SAPs’
oscillations, matrixes Ω = diag{Ω1,Ω2}, D = (δ/π)Ω,
W = Ω2, Dq

3 = {Dq
13,D

q
23}. Vector Mo = Mg

o + Ms
o

presents external torques with respect to a pole O, where

Mg
o is a vector of gravitational torque and Ms

o – a torque
vector by forces of solar pressure. At last, vector Mdo

o
presents the orientation engine unit (OEU) torques.

The motion model of the SC body with active SAPs is
easily turned out from (1) and have the form

J ω̇ + ω × Jω = Fω ≡ Mdo
o + Mp

o + Mo. (2)
The BRF orientation with respect to orbital reference
frame (ORF) Oxoyozo is defined by quaternion Λo ac-
cording to the differential equation

Λ̇
o

=
1
2

(Λo ◦ ω − ν̇o
o ◦Λo), (3)

where vector-column ν̇o
o(t) = {0, 0, ν̇o(t)} represents a

vector ν̇o(t) of the SC orbital angular rate in projections
on the ORF axes and νo(t) is true orbital anomaly. The
SC orbit is considered known,direction of unit E on the
Earth is also known, thus the vector of gravitational
torque Mo is represented by analytical dependence only
from quaternion Λo of the SC orientation with respect to
the ORF. The BRF attitude with respect to the inertial
reference frame (IRF) is defined by quaternion Λ according
to the differential equation Λ̇ = Λ◦ω/2. Therefor direction
of unit S on the Sun is also known and a torque vector
Ms

o by forces of solar pressure is represented by analytical
relations.

3. MODELS OF SYSTEM’S COMPONENTS

The instrument set of the SC attitude control system
(ACS) in the initial damping mode consists the OEU based
on six thermal-catalytic jet engines (JEs) with the thrust
PWM, a block of three one-axial angular rate sensors
(ARSs), the SGD and an angular position sensor by two
SAPs’ wings with respect to the SC body, and also onboard
computer.

At mode of the SC guidance on the Sun in the ACS
instrument composition is completed by the Sun sensor
(SS) with wide segmented field-of-view and at mode of
the SC guidance on the Earth — by the Earth sensor
(ES) with narrow field-of-view. Standard denotations for



values of a scalar discrete signal y(tk) = yk and y(ts) = ys

are further applied at the time moments tk = k Tu with
the control period Tu and multiple by their the time
moments ts =s Tq with the measurement period Tq where
integers k, s ∈ N0 ≡ [0, 1, 2, ...), moreover the multiple
index nq = Tu/Ts.

3.1 The OEU model

For the PWM of normalized command by the thrust
inclusion Pn(t, τd

k ) ∈ {0, 1}, k ∈ N0 by each JE, namely
Pn(t, τd

k ) = 1 ∀t ∈ [tk, tk+τd
k ) and Pn(t, τd

k ) = 0 ∀t ∈ [tk+
τd
k , tk+1), the modulation characteristic is described by the

ratio τd
k =ϕd(τm, τm, Tu, τk) :

τd
k =


0 τk < τm;
τk τm ≤ τk < τm;
τm τm ≤ τk < Tu;
Tu τk > Tu.

(4)

Taking into account a time (transport) delay T d
zu dynamic

processes on the normalized thrust Pn
d (t) for each JE are

presented by the differential equation
T d Ṗn

d + Pn
d = Pn(t− T d

zu, τ
d
k )

with the initial condition Pn
d (t0) = 0 where a time constant

T d accepts two values T d
+ or T d

− according to the ratio:
if Pn = 1 then T d = T d

+ else T d = T d
−.

For everyone j-th JE Dj , j = 1 : 6 there is compared the
vector Pj(t) = Pm Pn

d (t) pj of the current jet thrust with
fixed unit pj beginning in a point Od

j where Pm is the
current maximal thrust value, identical for all JEs. The
point Od

j arrangement is defined by a radius-vector ρj .
The OEU control torques concerning axes Ox, Oy and
Oz are created by JEs’ pairs. Logic of the command τjk

formation for inclusion everyone j-th JE takes into account
a sign of a command signal vik on channel i = x, y, z and
is described by such algorithm: τik = |vik|; sik = sign vik;
i = x, y, z and then, for example for i = x :
ifsxk > 0 then (τ1k = τxk&τ2k =0) else (τ1k =0&τ2k =τxk).
Formed by the OEU the control torque vector Mdo

o is
calculated by formula

Mdo
o ≡ M = {Mx,My,Mz} =

6∑
j=1

ρd
j ×Pj . (5)

3.2 Model of the SC body rate measurement

The model of the ARS block for measuring the SC body
rate vector represents by set of three same channels for
measurement ωi(t), i = x, y, z, moreover model of each its
channel takes into account: own dynamical properties; a
noise and systematic errors; a time sampling, quantization
and limit levels. Description of the measurement process
for a projection of angular rate ω(t) is presented as follows:

Tωω̇s(t) + ωs(t) = ω(t);

ωse(t) = Sats(aω, kω, ωs(t) + bω);

ωσ
s = ωse(ts) + ωn

s ;ωd
s = Qntr(dω, ωσ

s ).

(6)

Here Tq is a time sampling period and Tω is a time
constant; aω and kω are a restriction level and the nor-
malized gain; there are applied the standard functions

y=Sats(a, k, x) : if |x| ≤ a/k then y = kx else y = asignx
and y = Qntr(d, x) = d E[(x/d) + 0.5 signx] where d
is a quantization step and E[·] is a symbol of the whole
part for number [·]; bω is slowly varied ”zero drift”; ωn

s
is discrete noise of measurement which is considered as
Gauss stochastic discrete process with a zero mean and
root-mean-square deviation σω; dω is a quantization step
by an output signal, at last ωd

s is a discrete output signal.

3.3 Models of the Sun and the Earth sensors

The SS outputs are a sign Ns of the Sun presence into its
field-of-view and the spherical angular coordinates θS , ψS

of unit S with respect to the BRF Ox axis. The SS digital
output signals θd

Ss and ψd
Ss then are filtering by a computer

processing. The ES outputs are a sign Ne of the Earth
presence into its field-of-view and digital values of pitch
angle θd

s and roll angle ϕd
s .

3.4 Model of control contour at the SAPs guidance

The control contour by the SAPs position sensor and the
GSD is presented by set of a discrete subsystem with
forming error εγ

k = γc
k − Qntr(dγ , γk) and a piecewise-

continuous part γ̇(t) = Zh(Tu, γ̇
d
k ) with initial condition

γ(t0) = γ0. Here γ c
k is a discrete command signal, γ̇d

k =
kγ εγ

k and the holder with period Tu is such: y(t) =
Zh[Tu, xk]= xk ∀t ∈ [tk, tk+1).

4. ALGORITHMS OF FILTERING AND CONTROL

Operator for averaging with identical weights only nq last
measurements ys of a signal with obtaining an estimation
ȳk, optimum on method of the least squares, have the
description

ȳk = MS (ys) ≡ (
k∑

s=k−nq+1

ys)/nq; k = E[s/nq].

For example, for Sesat SC it was accepted Tq = 1 s and
Tu = 4 s, therefore the multiple index nq = 4. That
operator is applied for multiple filtering the discrete output
signals ωd

is of the ARSs on channels (i = x, y, z) and the
discrete output signals of the SS and the ES:

ω̄ik = MS(ωd
is);

θ̄Sk = MS(θd
Ss); ψ̄Sk = MS(ψd

Ss);

ϕ̄k = MS(ϕd
s); θ̄k = MS(θd

s ).

(7)

At initial damping mode, forming the discrete command
signals vik on channels is defined as follows:

vik = kω
i (ωc

i − ω̄ik), i = x, y, z. (8)
Here kω

i are the gain factors which are formed by relations
kω

i = kp cω
i ; kp = Pm

f /P
m, where kp is the adjusted

parameter for compensation of the JE’s thrust variation;
cω
i — values of the gain factors at a minimum level Pm

f of
the JE’s thrust.

For guidance the SC on the Sun by shortest way after its
appearing into the SS field-of-view (e.g. at Ns = 1) the
discrete vector control algorithm is suggested. Let us a
constant vector bs for required position of the unit S in
the BRF and vector pk = {p1k, p2k, p3k} is computed by
relation pk = bs × S̄k(θ̄Sk, ψ̄Sk).



Fig. 4. The logarithmic amplitude frequency characteris-
tics on Sesat open-loop pitch channel: a − cω

z = cωz0;
b− cω

z = 2cωz0; c− cω
z = 4cωz0.

According to elaborated algorithm there is forming a pre-
liminary discrete signal ṽik = −kp(k

p
i pik + kω

i ω̄ik). Than
value ṽm

ik = max(|ṽik|, i = x, y, z) is computed and at con-
dition ṽm

ik > Tu the resulting discrete controls on channels
are scaling by simple formula vik = Tu ṽik/ṽm

ik, i = x, y, z.

5. PROPERTIES OF FLEXIBLE SPACECRAFT

Both linear and nonlinear methods were applied for dy-
namical research of the robust SC ACS with a width-pulse
modulation of the jet engine thrust control.

After separating a SC from buster and disclosing the SAPs
at any time moment t = t0 the angular rate vector accepts
a value ω(t0) ∈ Sω from the bounded convex domain
Sω. Let the constant command values ωc

i (components
of the command angular rate vector ωc) are given and
them should be reached with given accuracy |ωi(t)−ωc

i | ≤
δω ∀t ≥ t0+Tr for some acceptable duration Tr of damping
mode. In this mode at any SAPs fixed position and the
gyro stabilizer momentum H = 0, linearized in the IRF
the continuous model of free flexible SC controlled motion
have the form

A1{δω̇, q̈, q̇} = B1{δω, q̇,q}+ {M,0,0}, (9)
where δω = ω − ωc and matrixes

A1 =
[
Ao 0
0 I2nq

]
;B1 =

[
0 0
0 Bo

]
;Bo =

[
−D −W
I2nq 0

]
.

For calculation of the SC transfer functions, the system (9)
is presented in the standard form of linear control system
ẋ = Ax+Bu; y = Cx, where for this case x = {δω, q̇,q},
u = M, and matrixes A = A−1

1 B1; B = A−1
1 {I3,0,0} and

C = [I3,0,0].

The logarithmic frequency characteristics of continuous
system from an input ui to an output yi, i = x, y, z were
obtained by specialized software. For multiple continuous-
discrete ACS taking into account the different delays both
a discrete measurement of the state vector and a physical
forming the PWM control original methods (Somov, 2001)
were applied in Somov (2005b,a). As an example, the
logarithmic amplitude frequency characteristics subject to
an absolute pseudo-frequency λ = (2/Tu)tg(ωTu/2) on the
Sesat open-loop pitch channel is presented in Fig. 4 with
cωz0 = 713.385 s2/rad.

At mode of the SC guidance on the Sun we have vector
H = 0 and the SC searching motion is fulfilled with
respect to the BRF axis Oy, e.g. vector ω = {0, ωy, 0},
for example ωy = 0.2 deg/s. Moreover the pith and
yaw channels have a weak gyroscopic connection which is

Fig. 5. The logarithmic frequency characteristics of contin-
uous pitch channel: a)H=0; b)H=40; c)H =85 Nms.

essential only for the slowly motions. At mode of the Earth
searching yet all three SC channels are gyro-connected, but
these influences are very weak. After finishing the Earth
guidance mode the gyro stabilizer rotor begins to up-rotate
and its own angular momentum H is increased up to value
H = 85 Nms. Fig. 5 presents the SC logarithmic frequency
characteristics of continuous pitch channel for three H
values. Moreover it is appeared additional resonance peak
by a nutation motion which is consistently changed to the
right with increasing H as a parameter.

6. NONLINEAR STABILITY ANALYSIS

The Lyapunov function method was used for a nonlinear
stability analysis (Somov, 2005a). At simplest example,
in a single-axis damping mode for the PWM parameters
Td = 0, T d

zu = 0, τm = 0, τm = Tu, with an idealized
measurement of angular rate and for its variation δωk ≡
ωk − ωc ≡ xk, the nonlinear channel discrete model
is presented by the difference equation xk+1 = xk −
bd Sat(Tu, vk); vk = kω xk, where bd ≡ dJ = Mm/J, kω

and maximum torque Mm are parameters. For Lyapunov
function vk ≡ v(xk) = |xk| there is derived the inequality
vk+1 = |xk − bd Sat(Tu, kω xk)| ≤ |1− bd kω|vk for xk 6= 0,
moreover v(0) = 0. In result the rigorous condition for
asymptotic stability of solution xk = 0 by this nonlinear
model have the form 0 < bd k

ω < 2, i.e. 0 < kω < 2/bd.

Fig. 6. The SC body angular rates and the OEU control
torques during damping mode



Fig. 7. Oscillations of 1-st wing on 1-st three tones

Fig. 8. Deviations of 1-st wing’s point #1 on Fig. 3 in mm
from its equilibrium position

In a single-axis attitude stabilization mode for same the
PWM parameters and the state vector xk ≡ {δαk, δωk},
the nonlinear channel model have the form

xk+1 = Adxk + (bd + δbd(τk))Sat(Tu, vd
k);

vd
k = Kd xk; τk = Sat(Tu, |vd

k|);

Ad =
[

1 Tu

0 1

]
; bd = −dJ

[
Tu

1

]
;

δbd(τk) = dJ

[
τk/2

0

]
; Kd = [ kα kω ].

(10)

Let be µ ≡ 1 − dJk
ω;χ ≡ kω + kαTu;µCθ ≡ 1 − djχ/2

and µSθ ≡ dj(4kαTu/dJ − χ2)1/2/2 for the conditions
0 < µ < 1 and χ < 2(kαTu/dJ)1/2. Then nonlinear
model (10) stability is proved by Lyapunov function vk ≡
v(xk) = (xt

k Vxk)1/2 with matrix

V ≡ (Tt T)−1; T ≡
[
TuµCθ TuµSθ

µCθ − 1 µSθ

]
,

where matrix T composed by eigenvectors of matrix Ao
d ≡

Ad+bd Kd for its eigenvalues z1,2 = µ(Cθ±jSθ), j ≡
√
−1.

For this Lyapunov function there is derived the inequality
vk+1 ≤ (µ2 + avk + bv2

k)1/2 vk, where constant parameters
a > 0 and b > 0 are appeared during a majorizing
procedure. That inequality is the basis for obtaining the
rigorous conditions of asymptotic stability of solution
xk = 0 by nonlinear discrete channel model and also for
estimating its guaranteed attracting set by the inequality
xt

0Vx0 ≤ (a2 − 4b(µ2 − 1))/(4b2).

7. PARAMETRIC SYNTHESIS AND ANALYSIS

Detailed nonlinear dynamical analysis of the flexible space-
craft ACS and parametric synthesis of discrete control
laws on channels were carried out by methods of computer
sumulation which were realized into Matlab environment
(Butyrin and Somov, 2004).

Fig. 9. The animation frames of the SC attitude motion

In the initial damping mode for various initial condi-
tions on coordinates on the SAPs’ oscillation tones analy-
sis of the SC dynamics was carried out. For exam-
ple, at given initial conditions q1(0) ≡ {q11, q12, q13} =
{0.2,−0.3,−0.2}; q̇1(0) = 0; q2(0) ≡ {q21, q22, q23} =
{−0.2, 0.3, 0.1}; q̇2(0)=0 numerical results are presented
in Fig. 6 – Fig. 8.

At the SC guidance on the Sun and on the Earth by elab-
orated discrete control laws for a width-pulse modulation
of the jet engine thrust, the SC structure flexibility have
smaller influence at comparison with the initial damping
mode yet for decrement δ = 10−3 of oscillations.

8. ANIMATION OF A FLEXIBLE SC MOTION

Russian software environment Super Vision was applied
for animation of the SC motion with flexible active SAPs.
In used version of this software the requirement speci-



fication is applied for creation and tuning the reflected
objects. Interface between components of the elaborated
software for simulation and visualization of the SC flexible
structure motion is carried out by files on hard disk. In
stage 1 the SC damping mode simulation is fulfilled. In
the Matlab environment the Simulink is started, results of
the subsystem work are graphics of the transient processes
on the ACS state coordinates and the data files, which are
recorded on hard disk (Somov, 2008).

In stage 2 the data preparation is carried out for ani-
mation of the SC body motion and the flexible SAPs’
oscillations by applied visualization system. At loading the
file panel.svn there will be reflected the indicated SAPs’
wing oscillations, and if file mnk.svn is loaded – the SC
body motion in the ORF. Some results obtained by the
elaborated software are presented in Fig. 9.

9. CONCLUSION

Problems of nonlinear modelling, dynamic synthesis and
analysis, simulation and visualization of a flexible space-
craft spatial motion were considered. The obtained results
on a multiple filtering and a width-pulse control for the
communication satellite with large-scale solar array panels
were represented.
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