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Abstract 
The main purpose of this paper is to verify the 

controllability and the involutivity of a set of 
governing equations of motion representing a 
nonlinear dynamic system. The objective of this 
verification is to check whether this set of equations is 
input-state linearizable and to prepare the system for 
the application of a nonlinear control technique 
named feedback linearization. The system under 
investigation is the slewing flexible beam. The 
nonlinearity comes from the coupling between the 
beam deflection and the angular displacement of the 
actuator, a DC motor. It is shown that the studied 
system is controllable and involutive. 
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1 Introduction 
Feedback linearization is a control technique used 

for nonlinear systems. It is viewed as a generalization 
of pole placement for linear systems [Marino and 
Tomei, 1995; Sheen and Bishop, 1992]. The basic 
idea of this approach to nonlinear control design is to 
algebraically transform a more complex nonlinear 
system dynamics into a simpler and equivalent linear 
one (completelly or partly), so that well known linear 
control techniques can be applied [Isidori, 1995].  
The existence of an output function h(x) used for 

feedback is essencial to solving the feedback 
linearization problem. The necessary and sufficient 
conditions for the existence of h(x) involves the rank 
of a controllability matrix whose columns are 
composed by Lie brackets of  vector fields associated 
to the system to be controled and the concept of 
involutivity of a distribution which is formed by these 
same Lie brackets [Sheen and Bishop, 1992; 
Marquez, 2003] as discussed in this paper.   

Feedback linearization is an approach to nonlinear 
control design that has attracted many researches in 
different fields [Singh and Yin, 1996; Joo and Seo, 
1997; Sheen and Bishop, 1992, for example].  
 

2 Geometric and Mathematical Model 
The geometric model of the system investigated in 

this paper is presented in Figure 1. This system 
comprises a flexible beam-like structure in slewing 
motion driven by an actuator (a DC motor).  
In this figure, the inertial axis is represented by XY, 

the moving axis (attached to the slewing axis and 
moving with it) is represented by xy,  the beam 
deflection (as a space-time variable) is represented by 
v(x,t) and the slewing angle is represented byθ (t).    

 
Figure 1.   The slewing flexible beam system. 

 
The mathematical model of this system is given by 

[Fenili, 2000]: 
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plus the boundary conditions given by φi’’(L,t) = 0 e 
φi’’’(L,t) = 0, where φi (x,t) are the mode shapes and 
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In the set of governing equations given by (1), the 
first two equations are related to the DC motor 
(electric equation and mechanical equation, 
respectively) and the last one is related to the flexible 
beam-like structure. 
In these equations, ia represents the electric current in 

the DC motor, θ  represents the angular displacement 
of the motor axle (also known as the slewing angle) 
and qj represents the time component of each one of 
the vibraton modes of the flexible structure.  
In the analysis developed here, the flexible structure 

is geometrically modeled assuming linear curvature 
and the Euler-Bernoulli assumptions for a slender 
beam are considered.  Only the first flexural mode of 
the beam is considered. The last equation in the set (1) 
is a discretized equation. 
Writing Equations (1) in state space form and 

considering only one mode for the beam deflection, 
one has: 
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In Equations (2), the states considered are: x1 = ia,   

θx2 = , θx3
&= , x4 = q1 and 15 qx &= . 

 

3 The vector fields f and g 
In order to check whether the proposed nonlinear 

control technique named feedback linearization can 
be applied to the nonlinear slewing flexible beam 
system or not, the set of governing equations of 
motion in state space form as given by Equations (2) 
must be writen in the form [Slotine and Li, 1991; 
Marino and Tomei, 1995]: 
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Writing Equation (2) in this form results:  
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and the vector fields f and g are given by: 
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4 Defining the Lie Brackets 
The next step is to build the vetor fields g, adf g, ... , 

adn-1
 f g for the system of Equations (4). The notation 

adf g represents the Lie bracket of the vector fields f 
and g and defines a third vector as given by [Slotine 
and Li, 1991; Marino and Tomei, 1995]: 
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For the case investigated here one has five states. 
Using the definition given by Equation (7) and the 
vectors f and g given by Equations (5) and (6) one 
has: 
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In the same way, one can show that: 
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where:  
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4 The controllability matrix 
The controllability matrix for nonlinear systems is 

given by [Slotine and Li, 1991; Marino and Tomei, 
1995]: 

] ad  ad  ad  ad   [C 432 ggggg ffff=  
 

All the columns of the controllability matrix C are 
the Lie brackets given in Section 3.  

___________________________________________ 
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Substituting each one of these vectors in matrix C 
one obtains: 
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___________________________________________ 

___________________________________________ 

Since for the system analysed in this work the 
elements of matrix C given by C21, C31, C41, C51, C22 
and C42 are equal to zero, the matrix given in (12) can 
be rewriten as: 
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One can note by checking the elements of matrix C 
(in (12) or (13)) that the controllability matrix does 
not depend on the state variable x5 (which is 
associated to q& , the velocity of deflection of the 
beam).  
It is also important to note that, in this same matrix, 

only the elements C44, C45, C53, C54 and C55 are 
functions of the system states (all the other elements 
are constants).   
 

5 The rank of the controllability matrix 
The analytical verification of the rank of matrix (12) 

(or (13)) is not an easy task because of the complexity 
(and the length) of the expression found for the 
determinant of this matrix.  
For this reason, the controllability of the nonlinear 

system studied here is verified in the neighborhood of 
a specific set of states. Let this set of states be given 
by: 

x1 = x10 
x2 = x20 
x3 = x30 

x4 = 0 
x5 = 0 

 

This set means that one is interested in analysing the 
controllability of the system in the situation in which 
the beam deflection and velocity of deflection in near 
zero but all the other states are anyone. 
Substituting x4 = x5 = 0 in the controllability matrix 

given in (13) results:  
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and whose determinant depends only on the state 
variable x3 and is given by:  
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which is different to zero. This result shows that the 
rank of the controllability matrix is 5 and, therefore,  
complete in the considered region.   
 

6 The involutivity condition 
Another condition to be satisfied in order to the 

slewing flexible beam system to be input-state 
linearizable is that the distribution: 
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be involutive near some equilibrium state  [Slotine e 
Li, 1991]. This condition is a result of the Frobenius 
Theorem and guarantee the existence of a 
diffeomorphic transformation [Isidori, 1995]. The 
existence of a diffeomorphic transformation implies 
the existence of a 1-to-1 mapping from a nonlinear 
vector field to a linear vector field and vice-versa. In 
other words, if a Lie bracket is formed by two vectors 
(from a determined set, as the distribution presented 
in (16), for example) the vector field resulting from 
this operation can be expressed as a linear 
combination of the original set of vector fields 
[Isidori, 1995].    
In this work, since there are five states, one must 

verify the involutivity of: 
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In order to check the involutivity of the distribution 
given in (17), the following two steps must be 
followed [Isidori, 1995]: 
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Step B. The existence of ai and bi must be proved such 
that: 
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If any of these conditions do not exist, the system of 

governing equations under investigation is not 
involutive and, therefore, it is also not input-state 
linearizable [Slotine e Li, 1991].   
 

6.1  Determination of the Lie brackets (given in 
 step A)       

The Lie brackets given i n Step A are: 
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6.2  Verifying the existence of ai and bi (in Step B)               
The idea now, in order to prove the involutivity of 

the distribution (16), is to prove that the coefficients ai 
and bi in B.1 to B.6 do exist.    
The Equation B.1 can be written as: 
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Solving the system of equations with two unknows 
given by (24) using the least squares method one 
obtains: 
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and the condition for involutivity is satisfied for 
Equation B.1.   
The vector fields g and ad f g are constant. The Lie 

bracket of two constant vectors is simply the vector 
zero [Slotine e Li, 1991], as concluded above. 
Therefore, it can be trivially expressed as a linear 
combination of these vector fields.       
  Following the same steps, the solution of B.2 is 
given by: 
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and the condition for involutivity is satisfied for 
Equation B.2. 
The solution of B.3 is given by: 
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and the condition for involutivity is satisfied for 
Equation B.3. 
The solution of B.4 is given by: 
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and the condition for involutivity is satisfied for 
Equation B.4. 
The solution of B.5 is given by: 
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and the condition for involutivity is satisfied for 
Equation B.5. 
Finally, the solution of B.6 is given by: 
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and the condition for involutivity is satisfied for 
Equation B.6. 
Equations (25) to (30) prove that all the conditions 

given in Step B are satisfied. Therefore, the set of 
vector fields given by the distribution (17) is 
involutive. 
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7 Conclusion 
It is well known that it is not possible to apply any  

nonlinear control technique in any nonlinear dynamic 
system.  
The possibility of applying a specific nonlinear 

control technique named feedback linearization in a 
specific dynamic system composed by a flexible 
beam-like structure in slewing motion is investigated 
in this work. This dynamic system is representative of 
a lightweight robotic manipulator used in industry or 
space applications, for instance. 
Feedback linearization is a technique to transform 

original system models into equivalent models of a 
simpler form. The central idea is to transform 
nonlinear systems dynamics into fully or partly linear 
ones. 
The necessary and sufficient conditions to be 

investigated in order to verify the applicability of this 
control technique are controllability and involutivity 
in a region in the neighborhood of an equilibrium 
solution. Feedback linearization uses mathematical 
tools from differential geometry, as the concept of Lie 
derivatives. 
According to the results presented here, the 

necessary and sufficient conditions to apply this 
technique are completely satisfied for the system 
investigated.  
The next step in this research is to apply this 

technique and control the studied system. 
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