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Abstract Feedback linearization is an approach to nonlinear
The main purpose of this paper is to verify the control design that has attracted many researahes i
controllability and the involutivity of a set of different fields [Singh and Yin, 1996; Joo and Seo,
governing equations of motion representing a 1997; Sheen and Bishop, 1992, for example].
nonlinear dynamic system. The objective of this
verification is to check whether this set of eqoiadi is
input-state linearizable and to prepare the sydtem
the application of a nonlinear control technique
named feedback linearization. The system under
investigation is the slewing flexible beam. The . .
nonlinearity comes from the coupling between the motion driven by an actuator (a DC motor).

beam deflection and the angular displacement of the In this fl_gure, t_he inertial axis is represe_nted)b_y,
actuator, a DC motor. It is shown that the studied th® moving axis (attached to the slewing axis and

system is controllable and involutive. moving with it) is represented by xy, the beam
deflection (as a space-time variable) is represebye

v(x,t) and the slewing angle is represente® ).

2 Geometric and Mathematical Model

The geometric model of the system investigated in
this paper is presented in Figure 1. This system
comprises a flexible beam-like structure in slewing

Key words
Controllability, involutivity, input-state linearaion,
nonlinear systems, nonlinear control.

1 Introduction

Feedback linearization is a control technique used
for nonlinear systems. It is viewed as a genertdina

of pole placement for linear systems [Marino and
Tomei, 1995; Sheen and Bishop, 1992]. The basic
idea of this approach to nonlinear control desgtoi
algebraically transform a more complex nonlinear
system dynamics into a simpler and equivalent linea
one (completelly or partly), so that well knowndar
control techniques can be applied [Isidori, 1995].

The existence of an output function h(x) used for
feedback is essencial to solving the feedback
linearization problem. The necessary and sufficient The mathematical model of this system is given by
conditions for the existence of h(x) involves tlamk [Fenili, 2000];

of a controllability matrix whose columns are

Figure 1. The slewing flexible beam system.

composed by Lie brackets of vector fields assediat i +ci +cp=cU
to the system to be controled and the concept of &t i °
involutivity of a distribution which is formed byése B+c,6-¢,i,=0 1)

same Lie brackets [Sheen and Bishop, 1992; .. . 2 A A2a —
Marquez, 2003] as discussed in this paper. 49, THG + Qg +(x].9 0 9= (



plus the boundary conditions given tpy(L,t) =0 e
@ (L,t) = 0, where @ (x,t) are the mode shapes and

2
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and the vector fieldsandg are given by:

f1(x)
f2(x)
f(x) =1f3(x)
f4(%)
f5(x)

(5)

In the set of governing equations given by (1), the where:

first two equations are related to the DC motor
(electric  equation and mechanical equation,
respectively) and the last one is related to tegilile
beam-like structure.

In these equations, iepresents the electric current in
the DC motor,0 represents the angular displacement
of the motor axle (also known as the slewing angle)
and q represents the time component of each one of
the vibraton modes of the flexible structure.

In the analysis developed here, the flexible stmact
is geometrically modeled assuming linear curvature
and the Euler-Bernoulli assumptions for a slender
beam are considered. Only the first flexural motie
the beam is considered. The last equation in thElye
is a discretized equation.

Writing Equations (1) in state space form and
considering only one mode for the beam deflection
one has:

)

—0EX, — X5+ XX, 0 L X 5= 0 £ X,

In Equations (2), the states considered ares %,
X5=0, X3=0, %= 0 andxs = ¢.

3 The vector fields fand g

In order to check whether the proposed nonlinear
control techniqgue named feedback linearization can
be applied to the nonlinear slewing flexible beam
system or not, the set of governing equations of
motion in state space form as given by Equatiofs (2
must be writen in the form [Slotine and Li, 1991,

Marino and Tomei, 1995]:

x=f(x)+g(x)u )
Writing Equation (2) in this form results:
Xy —C X TG Xy Cs
X, Xq 0
Xz 0= —CyX5 + C X, +<0
X, Xsg 0
%5 | (70X, —pXgFXX,FOCXma e x ) (O

f1(X) =—C1Xg — CoX3

f2(x) =x3

f3(X) = —Caxg *+ Xy

f4(x) =xs

() = ~wEX4 ~ kX5 + X§X4 +A1CaXg ~ A1CxXg
and

Cs Cu
0 Cy
9(x) =1 0}=4{Cy, (6)
0 Cu
0 Cs;

4 Defining the Lie Brackets

The next step is to build the vetor fielgsad g, ... ,
ad"*; g for the system of Equations (4). The notation
ad g represents the Lie bracket of the vector fields f
and g and defines a third vector as given by [Béoti
and Li, 1991; Marino and Tomei, 1995]:

adg=[f.g]=0g f-0f g @)

For the case investigated here one has five states.
Using the definition given by Equation (7) and the
vectors f and g given by Equations (5) and (6) one
has:

CiCs Cio
0 Ca
ad;g =1 —C4Cs5 1 =1Cs; (8)
0 Ca
01C4Cs Cs
In the same way, one can show that:
ad’rg=[f ,ad,g] =Dad,gf - Of ad,g
or:

v (4)




Ce Cis
C4Cs Ca
ad’g= -c, ={Cays ©
~ 01C4Cs Cus
2X3X4C4C5 + Cg Css
where:

Co = CiCs — C,C,Cs
C7 = CCyCs + C3C4Cs
Cg = 04C4C5 (1 +Cy +Cy)
and
ad’g=[f ad’rg] = Jad*gf - Of ad’tg

Cy =Cs+ C,CH
Crp = G366~ Gy
Cr3 = GG~ GGy
Cos = GG+ GG

4 The controllability matrix
The controllability matrix for nonlinear systems is
given by [Slotine and Li, 1991; Marino and Tomei,
1995]:

C=[g ad.g ad’rg ad’ g ad*g]

All the columns of the controllability matrix C are
the Lie brackets given in Section 3.

or:
Co Cu
5 C7 CZ4
ad’tg = —Cy, =4GC,, (10)
~2X3X,C4C5 ~ G Cu
2X3X4C11+ 2X1X4CZ4C5+ 2X3X504cs+a 1>%304cs+ Gy Cs4
where:

Cg = C1Ce —CoC7

Cro = C4C6 ~C3C7

Cy1 = C7 +C4C5H — C3C4Cs

C1p = 03Cyg ~ 0400 C,Cs + Cgld

and, finally:

adtg=[f ,ad® g] = Dad® gf —-Of ad® g

Substituting each one of these vectors in matrix C
one obtains:

C=|Cy Gz Cg3 Cy Cys (12)

or:
Cys Cis
Co Cys
ad'g = —Cyy ={Cy (11)
2X3X4022_ 4X1X4('24C5_ 4)(3)(50405_(x 1)%3(:405_ Co C45
2X,X,Ciq = 2X;X,Copt 2XoXsCort 4X,Xc€,Cah 4%,X,C,C+ X,C7 Cy |Cy
where:

C3 = GGy~ C1(3405

Cy =GCsCy t C26405+ G %’021

Cs =C;~ GGG~ G Al

Ce =Gt G4

C; = Cg+0,C,CH

Cg = Cs(*)i - CH ~U,C,C— O, C4C,
Cho =Cist 0240511

Cp=Cut C4C5‘*)21 ~ Cpe

Since for the system analysed in this work the
elements of matrix C given by, Cs1, Cig, Gsg, Coo
and G,are equal to zero, the matrix given in (12) can
be rewriten as:

(13)




One can note by checking the elements of matrix C C

(in (12) or (13)) that the controllability matrixods
not depend on the state variablg fwhich is
associated toq, the velocity of deflection of the
beam).

It is also important to note that, in this same rirat
only the elements £ Cs, GCsz, Csy and Gs are
functions of the system states (all the other eteme
are constants).

5 The rank of the controllability matrix

The analytical verification of the rank of matrik2)
(or (13)) is not an easy task because of the coritple
(and the length) of the expression found for the
determinant of this matrix.

For this reason, the controllability of the nonhne
system studied here is verified in the neighborhobd
a specific set of states. Let this set of stategiben
by:

X1 = X0
X2 = X0
X3 = X30
Xa= 0
Xg5 = 0

This set means that one is interested in analybiag
controllability of the system in the situation irhish
the beam deflection and velocity of deflection &an
zero but all the other states are anyone.

Substituting ¥ = X = 0 in the controllability matrix
given in (13) results:

(14)

o O o o

o014 = ~Cg

Co1s = ~01C4CsX5 = Cpy

Coze = A1C4Cs

Co17 =Cg

Co1g = 0;1C4CsX3 + Cyp

Co1o = Ci7X5 ~ Cig

and whose determinant depends only on the state
variable % and is given by:

Det(G) =-Coyy [ Coo (C06C014C010 *
C013C018C08 * C017C07C015 ~
C08C014C017 = C015C018C 06 ~
Co7Co015Co10) *

Co16 (Co6C011C 015 *
C010C014C08 + C07C012C013 ~
C08C011C013 = C015C07C 010 —
C06C012C014 )]

which is different to zero. This result shows tttz

rank of the controllability matrix is 5 and, thesed,
complete in the considered region.

(15)

6 The involutivity condition
Another condition to be satisfied in order to the

slewing flexible beam system to be input-state
linearizable is that the distribution:
A= spar{ g.adg,...ad" g } (16)

be involutive near some equilibrium state [Slota;ne
Li, 1991]. This condition is a result of the Frohen
Theorem and guarantee the existence of
diffeomorphic transformation [Isidori, 1995]. The
existence of a diffeomorphic transformation implies
the existence of a 1-to-1 mapping from a nonlinear
vector field to a linear vector field and vice-veersn
other words, if a Lie bracket is formed by two \ast
(from a determined set, as the distribution presknt
in (16), for example) the vector field resultingrin

this operation can be expressed as a linear
combination of the original set of vector fields
[Isidori, 1995].

In this work, since there are five states, one must
verify the involutivity of:

A=sparlg ad g ad’g,ad’g}

In order to check the involutivity of the distriliorm
given in (17), the following two steps must be
followed [lIsidori, 1995]:

a

17)

Step A. The following Lie brackets must be
determinated:

A.l.[g, adig]

A2.[g, ad*g]



A3.[g,ad’g]

A.4. [ad;g, ad’(g] 6.2 Verifying the existence of gand b (in Step B)
A5. [ad:g, ad*;g] The idea now, in order to prove the involutivity of
A.6.[ad’;g, ad’g] the distribution (16), is to prove that the coeéiits a

and hin B.1 to B.6 do exist.
Step B. The existence ofand hmust be proved such  The Equation B.1 can be written as:
that: -

B.1. ag +byadsg =[g, adsg ] Cs s 0

B.2. a9 +byad® g =[g, ad’(g] 0 0 0

B.3.a39 +bs ad3fgzz[g, ad’g] , 0 -c¢¢ {ai} =<0 (24)
B.4.a,ad;g +b,ad? g =[ad;g, ad®ig ] b,

B.5. aad;g +bsad®;g=[ad;g, ad®ig] 0 0 0

B.6. aad’;g +bsad® g =[ad? g, ad®ig] 10 a,c,G 0

If any of these conditions do not exist, the systém  Solving the system of equations with two unknows
governing equations under investigation is not given by (24) using the least squares method one
involutive and, therefore, it is also not inputtsta Obtains:

linearizable [Slotine e Li, 1991]. a 0
l —_—
/0o
6.1 Determination of the Lie brackets (given in !
step A) and the condition for involutivity is satisfied for
The Lie brackets given i n Step A are: Equation B.1.
The vector fieldsgy and ad g are constant. The Lie
[0, adig] = (Hadig) g— (g) adig bracket of two constant vectors is simply the vecto
_ {0 000 O}T (18) zero [Slotiqe e Li, 1991], as concluded abpve.
Therefore, it can be trivially expressed as a linea
) ) ) combination of these vector fields.
[g,ad’ig] = (Had*tg) g-(Lg) ad*ig Following the same steps, the solution of B.2 is
={0 0 0 0 0} (19)  given by:
a, 0
[9, ad’rg] = (Dad®ig) g— (0 g) ad’g {b }:{o} (26)
2

H0 0 0 0 2x,c%2} (0
and the condition for involutivity is satisfied for
Equation B.2.

[ad:g, ad’g] = ([ ad*rg) adg - ([ ad;g) ad’g 'Ighe solution of B.3 is given by:

Ho 0 0 0 -2x,c2c2} ()

a3a
a.
[adrg, ad’rg] = (O ad’;g) adig - (0 adrg) ad*g ’ _ )% 27)
o b3 a30
0 azp
= 0
where:
ox el 2 2,6 p 4 Az, = _20903C5X4d1
- +
X4 G 4(é (X GGGt X 46%)' 1)(3&4 a3b=c§(cf0+c§+c§+(—cg—204c5x3x4)2+
= )
[adzfg, adsfg] =0 adsfg) adzfg -(U adzfg) ad3f9
0
0
= 0 23
- 2(X,C, ¢, + U, %G, ) (23)
2%,C46:G~ 26 (X, Gu+ %G GHO X6 GY @ 166 (66t XGGY
2X4C4C5C.LO+ 8%3 X464és_ 2)%04(%%




8, = 2€5C5X 40,

dy = Cp + 26 G X X, + 26, XX+ 26, G X, Xeh O 1C, G
and the condition for involutivity is satisfied for

Equation B.3.
The solution of B.4 is given by:

a
a, a4a
_ |8
- (28)
Ay
b,
Ay

where:

8ya = ~2C5CX 4 (07C3CE +01C4(CG + €7 +C5CE) =
d,4(Cg +2€,4C5X3X,))

a4, =C5ds +dg +CF (C5 +C7) + 4,CsX X g +
4cieexax; (et +c3)

8y = —2C5CEX 4 (—01C1C4Cq — 11CAC; + (Cg +
2€,C5X 35X 4)(Cf +C7))

d, =c? +a’c? + ¢ +2alcs +ajc]

ds = =20, (C,C6C; + 11C,C6Cq + 01C4C;Cy)

d, =c,cq +CyC4

ds =cid, +cici +a7cs +a’cs +c3

dg =cicg —0,C,d, +Cicy

and the condition for involutivity is satisfied for

Equation B.4.
The solution of B.5 is given by:

a,
a 5a
_ )%
as, (29)
bs
a5y
where:
355 = 04C40 001 — (dgdyg +d70g)(C4C10 + C1C) —
0,C.10 0l
_ 2,2, 2, 22
Asp = C5(0yp = 2€,C4CoCy +d7(Cy +Cy +04Cy) —
dys+dy, +Ci07)
5. = — alcézlclodlo = 0,1C1C4CyCyp + (dgdyg +

d,dg)(cf +c}) +ajcsd,dg
a5g = Oy~ 2CC,CoCyp + A5 (CF +C +a;Cy) —dyg+
dy, +crdg
d; =-2X3X,C4C5 — Cq
dg = 2(X3X 4Cqq + X1X4C5Cs + X 3X5C4C5) +
11X5C4Cs + Cyp

— 2.2
dg =2x,c5C

dio = 2X,C1C5CE —2(X,4C4CsCyy +X5C5C5) +
Ao, X 5C5CE

dy;, =¢ +c5 +ciy +df

dy, = (€7 +cho)(c] +ajch

d3 = 20,405 (C4Cyo +C1Cy)

dy, =C5 (7 +c5 +ofcg +d3)

and the condition for involutivity is satisfied for

Equation B.5.
Finally, the solution of B.6 is given by:

a,
3.6 6a
_ ) b
8gc (30)
be -
8gp
where:
Aga = —0,1C4Cs0;,0;g +d;50;70,0 +dy50igd,; =
dy6ds8d5;

Agp = CroUys + Cod 56 + d7ed,, + 750y, ~
2011C4C50;5050 — 250,605+ 50

g = 0,C4Cs070, —dy5d70ps —dysdigd,, +
dy6d1d o4

di5 = 2X3X4C4Cs + Cg

Oig = 2(XaX4Crq + X, X4C1Cs + XgX5CyCs) +
0, X5C,C5 + Cry

dy; = 2(X,4C4CsC; + 03X 5C4CE)

tig = 2X,C4C5C6 ~ 2C7(X4Cp1 + X5CaCs + 11XoC,Cs) =
20,C4C5(X3Crq + X1C4C5) + 2X,C,CsCag +
8X5X 4C5CE — 2X4C,4CCq

dyg =C7 +Cj + iy +dg

Oy =C7Cyp +C4C5C7 +CqCq + 506

dyy =C% +c5 +cfy +diy

0y, =C7Cyp +C€4C5C7 +CeCq +013C4Cxy5

dys =Cics +cg +C5 +dy

d,y =CC5 +C5 +C7 +05C5Cs

d,s =CiCs +cf +ajcics +diy

Oys = =2C19C4Cs + a7C4CE +CG +C7 +C

dyy =CiC3 +Cg + 207 +Cg +dy

Opg =C4Cyp +C4C5C7 +CoCy

_ 222 2
Oy = =2C(C;Cq (Cyg +C4C5) +C4C5C (L+ap)

and the condition for involutivity is satisfied for

Equation B.6.

Equations (25) to (30) prove that all the condision

given in Step B are satisfied. Therefore, the det o

vector fields given by the distribution (17) is
involutive.



7 Conclusion Control”, Prentice-Hall, Inc., New Jersey, USA,
It is well known that it is not possible to applgya 1991.
nonlinear control technique in any nonlinear dyrami
system.

The possibility of applying a specific nonlinear
control technique named feedback linearization in a
specific dynamic system composed by a flexible
beam-like structure in slewing motion is investaght

in this work. This dynamic system is representatife

a lightweight robotic manipulator used in industiy
space applications, for instance.

Feedback linearization is a technique to transform
original system models into equivalent models of a
simpler form. The central idea is to transform
nonlinear systems dynamics into fully or partlyetm
ones.

The necessary and sufficient conditions to be
investigated in order to verify the applicabilitf this
control technique are controllability and involuty

in a region in the neighborhood of an equilibrium
solution. Feedback linearization uses mathematical
tools from differential geometry, as the concepLief
derivatives.

According to the results presented here, the
necessary and sufficient conditions to apply this
technique are completely satisfied for the system
investigated.

The next step in this research is to apply this
technique and control the studied system.
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