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Abstract
The problems of identifying the frequency and param-

eters of multi-sinusoidal signals with constant parame-
ters are considered in finite time. The signal is repre-
sented as the output of a linear generator, where the pa-
rameters of the sinusoidal signal (amplitude, phase, and
frequency) are unknown. The main idea is to apply the
Jordan waveform and lag to parameterize the signal and
obtain a linear regression model. Unknown parameters
are estimated using DREM method. The performance
of algorithms considered in the article is illustrated by
computer modeling. Our main contribution is to propose
a new approach for parameterization of multisinusoidal
signals and finite time parameter estimation.
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1 Introduction
The problem of determining the unknown amplitudes,

frequencies and phases of the components of a multi-
sinusoidal signal represents a fundamental challenge in
many engineering fields, such as active noise and vibra-
tion control, periodic disturbance rejection, power qual-
ity monitoring, etc.

The article is devoted to the method of construct-
ing an algorithm for estimating the parameters of a
multi-sinusoidal signal, including the frequency, am-
plitude and phase of each harmonic. Such a prob-
lem arises when solving compensating problem for a
parametrically unspecified disturbance [Bobtsov, 2012],
[Tsykunov, 2007], [Marino, 2007], [Marino, 2018],
[Khac, 2021], which has a certain deterministic multi-
sinusoidal structure. Approaches are also known when
the number of harmonics in the signal spectrum is not
known in advance [Marson, 2018], [Pin, 2019].

One of the main tasks in the design of automatic con-
trol systems is the leveling out of the action of paramet-
rically undefined disturbing influences on the control ob-
ject. In the theory of linear systems, there is an internal
model principle for solving such problems. In the case of
harmonic disturbances, the model parameters will con-
tain unknown frequencies. The initial conditions will be
set by unknown displacement, amplitudes, and phases of
the disturbing signal’s harmonics. In this case, it is nec-
essary to apply adaptive internal models, which provide
the possibility of parametric identification of the disturb-
ing signal.

The most commonly used method for processing sig-
nals with constant parameters is the Fast Fourier Trans-
form (FFT). In particular, approaches based on the FFT
have been used in recognition of human emotions based
on a signal from an electroencephalograph [Murugap-
pan, 2013], in the analysis of seismic activity [Spyers-
Ashby, 1998], etc. However, as is known, the accu-
racy of the FFT deteriorates significantly if the signal
frequencies change over time [Bittanti, 2000], [Vlasov,
2018]. Moreover, the FFT works with sets of measure-
ments of the input signal and requires quite large mem-
ory resources, especially when high accuracy of the re-
sulting estimates is required. Despite the simplicity and
efficiency of the method for signals with constant pa-
rameters, the FFT is rarely used in practical problems
that require the construction of estimates of input signal
parameters in real time.

A qualitatively different approach to estimate the pa-
rameters of a multi-sinusoidal signal based on an adap-
tive observer is presented in [Obregon-Pulido, 2002],
[Xia, 2002], [Hou, 2007], [Hou, 2012], [Sharma, 2008].
The main advantage of this identification approach is
the global convergence of parameter estimation errors to
zero. The first algorithm of this class for a sinusoidal
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signal without bias, proposed in [Hsu, 1999], [Vlasov,
2019], was based on an adaptive notch filter, and the syn-
thesized observer had a dimension equal to 3. Another
algorithm [Tomei, 2002] describes an adaptive observer
of order 5n for estimating n frequencies and an un-
known offset. In publications [Obregon-Pulido, 2002],
[Xia, 2002], [Hou, 2007], a 3n + 1 dimensional esti-
mation scheme is proposed for constructing estimates
of all 3n + 1 parameters, including frequencies, am-
plitudes, phases of n harmonics included in the signal,
and a constant offset. In later works [Carnevale, 2011],
[Pyrkin, 2015] an algorithm for identifying the minimum
dynamic dimension 3n for a shifted polyharmonic sig-
nal. Note that the dimension of the dynamic observer
directly affects the complexity of implementation and
performance of the identification algorithm. Further de-
velopment of this approach aimed to improve the quality
of the obtained estimates in the presence of noise in the
measurements [Aranovskiy, 2016], [Wang, 2017].

A common drawback of the mentioned approaches to
estimating the parameters of a multi-sinusoidal signal is
that harmonic frequencies are not directly estimated. As
a rule, the polynomial coefficients are first estimated, the
roots of which are related to the frequencies of the orig-
inal signal. Thus, to construct frequency estimates, it is
necessary to find the roots of a polynomial with dynami-
cally changing coefficients, which significantly increases
the computational complexity of the algorithm in the
presence of a large number harmonics in the measured
signal. The papers [Chen, 2014], [Wang, 2015], [Pin,
2019] propose new adaptive observers that make it pos-
sible to eliminate the aforementioned shortcoming and
obtain a frequency estimate directly without any need of
further processing.

In this paper, we propose methods for improving the
quality of estimating parameters of multi-sinusoidal sig-
nals and converging exponential estimation errors to
zero. The new method is based on the parameterization
of the measured signal with a lag operator to obtain a
linear regression model that depends on the measured
signals and estimated parameters.

The rest of this paper is organized as follows. The
problem statement is described in Section 2. Section 3
deals with the problem of parameterization of multisi-
nusoidal signals. The algorithm for estimating unknown
parameters in the regression model will be presented in
Section 4. Section 5 proposes an algorithm for estimat-
ing the amplitude and phase. In section 6, the com-
puter simulation results of the proposed algorithms are
included to confirm the efficiency of the approach. The
conclusion is given in Section 7.

2 Problem statement
Consider a measurable multi-sinusoidal signal

y(t) =

n∑
i=1

Ai sin(ωit+ φi), (1)

where ωi ∈ R+ are frequencies, ωi ̸= ωj ,i, j = 1, n,
φi ∈ R are phases, Ai ∈ R are amplitudes, n is the
number of harmonics in the signal y(t). The parame-
ters Ai, ωi, φi are constant and unknown. The objective
is to finding the estimates ω̂ft

i (t) of the frequencies ωi,
Âft

i (t) of the amplitudes Ai and φ̂ft
i (t) of the phases

φi, i = 1, n such that

ω̃ft
i (t) = ωi − ω̂ft

i (t) = 0, (2)

Ãft
i (t) = Ai − Âft

i (t) = 0, (3)

φ̃ft
i (t) = φi − φ̂ft

i (t) = 0. (4)

Our assumption is the following
Assumption . The lower ω and upper ω frequency

boundaries for the signal (1) are known, where 0 < ω ≤
ωi ≤ ω, i = 1, n.

3 Parametrization
Consider the measured signal consists of single har-

monic n = 1

y (t) = A sin (ωt+ φ) (5)

The signal y(t) can be represented as the outputs of lin-
ear generators [Nikiforov, 1997]

y (t) = HT ξ (t) (6)

ξ̇ (t) = Γξ (t) (7)

where ξ(t) ∈ Rq is the generator state vector with an
initial value ξ(0), H ∈ Rq constant coefficient matrix,
Γ ∈ Rq×q is constant vector of the corresponding di-
mension.

Build signal generator y(t).
Choosing the signal ξ1 = y(t) as the first coordinate of

the generator state vector.
Taking the time derivative ξ1 we have

ξ1 = A sin(ωt+ φ),

ξ̇1 = ẏ(t) = Aω cos(ωt+ φ).

Take the derivative of the sinusoidal signal ξ2 = ẏ(t) as
the first coordinate of the generator state vector.

Taking the time derivative ξ2 we have

ξ̇2 = ÿ(t) = −Aω2 sin(ωt+ φ) = −ω2ξ1.

For the matrix form, expressions (6)–(7) take the form
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ξ =

[
ξ1
ξ2

]
, (8)

Γ =

[
0 1

−ω2 0

]
, (9)

H =

[
1
0

]
. (10)

Transform the equation (7) into the form

ξ̇ (t) = Γξ (t) ⇒ ξ (t) = eΓtξ (0) . (11)

Substituting equation (11) into equation (6), we obtain

y(t) = HT eΓtξ (0) . (12)

Along with the measured signal y(t), consider the de-
layed signal

y1 (t) =

{
y (t− d) , t ≥ d,

0, t < d.
(13)

y (t− d) = HT eΓ(t−d)ξ (0) = HT eΓte−Γdξ (0) ,
(14)

where d ∈ R+ is a constant delay.
Remark. Restriction on the selected delay value d from

(14).

d <
π

2nω
.

Based on equations (11) and (14), obtain

y (t− d) = HT e−Γdξ (t) . (15)

Proposition 1. The signal (15) is described by the rela-
tion

y (t− d) =
[
cosωd −ω−1 sinωd

]
ξ (t) .

Proof. Apply the Jordan form of the matrix for the
converter eΓd of equation (15).

First, calculate the eigenvalues of the matrix Γ

det (Γ− λI) =

∣∣∣∣ 0− λ 1
−ω2 0− λ

∣∣∣∣ = 0,⇒ λ2 + ω2 = 0,

⇒ λ1 = iω, λ2 = −iω.

where i is the complex numbers.

For each of the eigenvalues λ1, λ2, find the eigenvec-
tors.

For a number λ1 = iω[
−iω 1
−ω2 −iω

] [
x1
y1

]
= 0,⇒

{
−iωx1 + y1 = 0

−ω2x1 − iωy1 = 0

⇒ y1 = iωx1.

Assuming x1 = 1, find the eigenvector V1 = (x1, y1)
T

x1 = 1,⇒ y1 = iω,⇒ V1 =

[
1
iω

]
.

Similarly, we find the eigenvector V2 = (x2, y2)
T asso-

ciated with the eigenvalue λ2 = −iω[
iω 1
−ω2 iω

] [
x2
y2

]
= 0,⇒

{
iωx2 + y2 = 0

−ω2x2 + iωy2 = 0

⇒ y2 = −iωx2.

Assuming x2 = 1, find the eigenvector V2 = (x2, y2)
T

x2 = 1,⇒ y2 = iω,⇒ V2 =

[
1

−iω

]
.

Compose the V matrix from the found eigenvectors V1
and V2

V =

[
1 1
iω −iω

]
.

Write in the Jordan formula JΓ for a given matrix Γ,
using the form [Weintraub, 2009]

JΓ = V −1ΓV =

[
iω 0
0 −iω

]
.

Compose the matrix eJΓd

eJΓd =

[
eiωd 0
0 e−iωd

]
.

Calculate the matrix exponent eΓd, using the form

eΓd = V eJΓdV −1 =

[
eiωd+e−iωd

2
1
ω

eiωd−e−iωd

2i

−ω eiωd−e−iωd

2i
eiωd+e−iωd

2

]
.

Expand the exponential functions eiωd, e−iωd according
to the Euler formula

eiωd + e−iωd

2
= cos(ωd),

eiωd − e−iωd

2i
= sin(ωd).
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Get the following result

e−Γd =

[
cos(ωd) −ω−1 sin(ωd)
ω sin(ωd) cos(ωd)

]
. (16)

From (15) and (16), we have

y (t− d) = HT

[
cos(ωd) −ω−1 sin(ωd)
ω sin(ωd) cos(ωd)

]
ξ (t) .

y (t− d) =
[
cos(ωd) −ω−1 sin(ωd)

]
ξ (t) . (17)

which is required to prove statement 1.
Similarly for block delay 2d.

y (t− 2d) =
[
cos 2(ωd) −ω−1 sin 2(ωd)

]
ξ (t) . (18)

From (17) and (18) we have the following matrix[
y (t− d)
y (t− 2d)

]
=

[
cosωd

cos 2ωd

−ω−1 sinωd

−ω−1 sin 2ωd

]
ξ (t) .

Consider the following system

Y = Φξ, (19)

where Y =

[
y (t− d)
y (t− 2d)

]
, Φ =[

cosωd

cos 2ωd

−ω−1 sinωd

−ω−1 sin 2ωd

]
.

With n harmonics.
Consider the problem of constructing a regression

model for the general case (1) with n signals.

y (t) =

n∑
i=1

Ai sin (ωit+ φi) . (20)

We consider discrete signal corresponging to (20)

y [k] =

n∑
i=1

Ai sin (ωikT + φi) . (21)

Express the value of a discrete signal (21) at the time
kT as a linear combination of 2n previous values of
y [(k − 1)T ] , ..., y [(k − 2n)T ]. The similar is true for
a continuous signal.

For this purpose, we apply the delay operator on the
measured signal (1).

Signals with multiple delays can be represented by us-
ing this delay operator, as

y (t− d) = Ωy (t)

y (t− 2d) = Ω2y (t)

...
y (t− nd) = Ωny (t)

Rewrite equation (17) as(
Ω2 − 2Ω + 1

)
y (t) = 0. (22)

where c = cos (ωd), Ω is the delay operators.
Proposition 2. The following relation holds for any

signal δ̄(t) with the sinusoids number n:[
Ω2 − 2Ωc1 + 1

]
·...·

[
Ω2 − 2Ωcn + 1

]
y(t) = 0. (23)

where ci = cos (ωid), i = 1, n.
Proof. To prove proposition 2, we use the method of

mathematical induction.
The proposition is true for n = 1, according to (22).
Inductive step. Show that for any k > 1, if the equation

(23) holds true yk (t) then for yk+1 (t) it also holds true.
This can be done as follows[

Ω2 − 2Ωc1 + 1
]
· ... ·

[
Ω2 − 2Ωck + 1

]
yk (t) = 0.

(24)
Expressing yk+1(t) with yk(t).[
Ω2 − 2Ωc1 + 1

]
· ... ·

[
Ω2 − 2Ωck+1 + 1

]
yk+1 (t) =

=
[
Ω2 − 2Ωc1 + 1

]
· ... ·

[
Ω2 − 2Ωck + 1

]
yk (t)+

+
[
Ω2 − 2Ωc1 + 1

]
· ... ·

[
Ω2 − 2Ωck + 1

]
βk+1(t),

(25)
According to (24), we obtain[
Ω2 − 2Ωc1 + 1

]
· ... ·

[
Ω2 − 2Ωck+1 + 1

]
yk+1 (t) =[

Ω2 − 2Ωc1 + 1
]
· ... ·

[
Ω2 − 2Ωck + 1

]
βk+1(t),

(26)
where βk+1 = Ak+1 sin (ωk+1t+ φk+1).

Note that we can consider the expression βk+1 as a
signal (22), then[

Ω2 − 2Ωck+1 + 1
]
βk+1 = 0. (27)

Applying the operator βk+1 to (26) yields[
Ω2 − 2Ωc1 + 1

]
· . . . ·

[
Ω2 − 2Ωck+1 + 1

]
yk+1 =

=
[
Ω2 − 2Ωc1 + 1

]
· . . . ·

[
Ω2 − 2Ωck + 1

]
·[

Ω2 − 2Ωck+1 + 1
]
βk+1

(28)

From (27) and (28), obtain[
Ω2 − 2Ωc1 + 1

]
·...·

[
Ω2 − 2Ωck+1 + 1

]
yk+1 (t) = 0.

(29)
Since both the base case and the inductive step have
been performed, by mathematical induction the state-
ment holds for all natural numbers n.

This completes the proof.
Now we are constructing from (23) the regression

model for the general case as

Ξ (t) = ψT (t)Θi, (30)
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where Ξ ∈ R1 is a dependent function, ψ =[
ψ1 ψ2 ... ψn

]T ∈ Rn is regressor, θ =
[
θ1 θ2 ... θn

]
∈

Rn is vector of unknown parameters, or more specifi-
cally[
Ω2 + 1

]n
y (t) = Θ1ψ1 (t)+Θ2ψ2 (t)+...+Θnψn (t) .

(31)
The Ξ (t) component is obtained using the Newton bino-
mial

Ξ (t) =
[
Ω2 + 1

]n
y(t), (32)

The components of the vector of unknown parameters
Θi are related to ci, i = 1, n by Vieta’s formulas

Θ1 = c1 + c2 + . . .+ cn,

Θ2 = −c1c2 − c1c3 − . . .− cn−1cn,

...

Θn = (−1)
n+1

c1c2 · . . . · cn.

The components of the ψi (t) regressor are as follows

ψ1 = 2Ω
[
Ω2 + 1

]n−1
y (t) ,

ψ2 = 22Ω2
[
Ω2 + 1

]n−2
y (t) ,

...
ψn = 2nΩny (t) .

4 Estimation algorithm
Parameters estimations of the first order regression

model (30) can be obtained using method DREM [Ara-
novskiy, 2017].

Applying the delay block τp, p = 1, n− 1 for the
known elements of the regression model (30), then for
(30) we get

Ξ (t− τp) = ψT (t− τp)Θi. (33)

Denote

χe = ϖeΘi, (34)

where χe =
[
Ξ (t) Ξ (t− τ1) ... Ξ (t− τp)

]T
, ϖe =[

ψT (t) ψT (t− τ1) ... ψ
T (t− τp)

]
.

Multiplying (34) by adjϖe (t), gives

χi (t) = ∆ (t)Θi, (35)

where ∆(t) = detϖe (t) ∈ R1, χi (t) = adjϖeχe (t) ∈
Rn.

Algorithm for estimating parameters Θi can be pre-
sented as

Θ̂i (t) = κi∆(t)
(
χi (t)−∆(t) Θ̂i

)
, (36)

where κi is any positive number.

To obtain an estimate in finite time, we replace the es-
timation error Θ̃i (t) by definition with Θi − Θ̂i (t)

Θi − Θ̂i (t) = ΘiW (t)− Θ̂i (0)W (t) , (37)

where Ẇ (t) = −κi∆2 (t)W (t) ,W (0) =

1orW (t) = e−κ
∫ t
0
∆2(s)ds.

Express the value of the parameter Θi = Θ̂ft
i (t) ex-

plicitly from the relation (37)

Θ̂ft
i (t) =

Θ̂i (t)−W (t) Θ̂i (0)

1−W (t)
. (38)

Frequency Estimation
To estimate the frequency, use the function arccos (.)

based on the parameter ĉfti (t) from (38)

ω̂ft
i (t) =

1

d
arccos

(
ĉfti (t)

)
, i = 1, n. (39)

5 Amplitude and phase estimation
Construct a linear regression model depending on

the measured signal y(t) and frequency estimates
ω̂ft
i (t)),i = 1, n to obtain estimates of the amplitudes
Ai and phases φi, i = 1, n of the signal (1).

Consideration of a signal ŷ(t), similar to (1), in which
instead of the frequency values ωi, the estimates ω̂ft

i (t))
obtained in the previous section are used

ŷ(t) =

n∑
i=1

Ai sin
(
ω̂ft
i (t) + φi

)
. (40)

Note that the measured signal (1) can be represented as
ŷ(t) for t > t0

y (t) =

n∑
i=1

Ai sin (ωit+ φi) , (41)

y (t) =

n∑
i=1

Ai sin
(
ω̃ft
i (t) + ω̂ft

i (t) t+ φi

)
,

y (t) =

n∑
i=1

Ai sin ω̃
ft
i (t) cos

(
ω̂ft
i (t) t+ φi

)
+

+Ai cos ω̃
ft
i (t) sin

(
ω̂ft
i (t) t+ φi

)
,

y (t) =

n∑
i=1

Ai sin
(
ω̂ft
i (t) t+ φi

)
= ŷ (t) , (42)

where ω̃ft
i (t) = ωi − ω̂ft

i (t) frequency estimation error
ωi in finite time.
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Figure 1. Frequency estimation plot ω̂ft
i (t)

Figure 2. Amplitude estimation plot Âft
i (t)

Figure 3. Phase estimation plot φ̂ft
i (t)

Then, proceeding from (40) and (42), we obtain

y (t) =

n∑
i=1

Ai sin
(
ω̂ft
i (t) t

)
cosφi+

+Ai sinφi cos
(
ω̂ft
i (t) t

) (43)

Rewrite expression (43) as a linear regression model

υ (t) = ρT (t) η, (44)

where υ (t) ∈ R is the measured function, ρ (t) ∈ R2n is
the regressor, η ∈ R2n - vector of unknown parameters,
which are defined by the following expressions:

υ (t) = y (t) , ρ (t) =



sin (ω̂1 (t) t)
cos (ω̂1 (t) t)
sin (ω̂2 (t) t)
cos (ω̂2 (t) t)

...
sin (ω̂n (t) t)
cos (ω̂n (t) t)


, η =



A1 cosφ1

A1 sinφ1

A2 cosφ2

A2 sinφ2

...
An cosφn

An sinφn


.

(45)

Now let us construct estimates for the amplitudesAi and
phases φi, i = 1, n of the signal (1) from the linear re-
gression model (44), whose unknown parameters are the
components of the constant vector η of the original re-
gression model (44). As a result, applying the method
DREM, for the first order regression models, we obtain
the estimates η̂ftj (t), j = 1, 2n components of the un-
known vector η from model (44), and the estimation er-
rors η̃ftj (t), j = 1, 2n converge to zero in a finite time.

Then the estimates Âft
i (t) for the amplitudes Ai and

φ̂ft
i (t) for the phases φi, i = 1, n can be obtained from

η̂ftj (t) as follows

Âft
i (t) =

√[
η̂ft2i−1 (t)

]2
+

[
η̂ft2i (t)

]2
, (46)

φ̂ft
i (t) =

 arccos
η̂ft2i−1 (t)

Âft
i (t)

, Âft
i (t) > 0,

0, Âft
i (t) = 0.

(47)

6 Simulation
In this section, we present simulation results that illus-

trate the efficiency of proposed estimation algorithm. All
simulations have been performed in MATLAB Simulink.

Example 1
Consider a signal y(t) consisting of two sinusoids n =

2

y (t) = sin (4t+ 1) + 2 sin (3t+ 2) . (48)

Parameter values of the proposed method:
Delay values d = 0.1, τ = 0.1,
DREM method parameter κ = 104.
On Fig. 1–3 shows the results of estimating frequen-

cies ω̂ft
i (t), amplitudes Âft

i (t), phases φ̂ft
i (t) signal

(48) in a finite time.
Example 2
Consider a signal y(t) consisting of two sinusoids n =

3

y (t) = sin (2t+ 1) + 2 sin (3t+ 2) + 3 sin (4t+ 3) .
(49)

Parameter values of the proposed method:
Delay values d = 0.1, τ1 = 0.1, τ2 = 0.2,
DREM method parameter κ = 106.
On Fig. 4–6 shows the results of estimating frequen-

cies ω̂ft
i (t), amplitudes Âft

i (t), phases φ̂ft
i (t) signal

(49) in a finite time.
In Fig. 1–6 show the results of estimating the fre-

quency ωi, amplitudeAi and phase φi of the signal (48),
(49) in finite time. As can be seen from the graphs,
the proposed estimation algorithm provides exponential
convergence to the true values of the estimation of the
signals parameters y(t).
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Figure 4. Frequency estimation plot ω̂ft
i (t)

Figure 5. Amplitude estimation plot Âft
i (t)

Figure 6. Phase estimation plot φ̂ft
i (t)

7 Conclusions
The article considers the problem of estimating the pa-

rameters of a multisinusoidal signal in finite time. A new
parameterization method based on delay operator appli-
cation on a measurable signal is applied to construct a
linear regression model. At the first stage, the frequency
estimates were obtained, and in the second stage, the
amplitudes and phases of the measured signal were es-
timated. In each of two stages, linear regression mod-
els were built depending on the unknown parameters of
original harmonic signal. The parameter vector of the re-
gression models was estimated using the DREM method.
Methods for producing estimates of the frequency of a
multisinusoidal signal are presented, making it possible
to obtain estimates of the parameters at a predetermined
time. A computer simulation has been carried out to il-
lustrate the performance, demonstrating the parametric
convergence of algorithm variable to the correct value.
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