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Abstract. The problem of control of an invariant for the model of the multispecies 

Lotka-Volterra ecosystem model is examined. The algorithm for control of oscillatory 

behavior of the ecosystem based on the speed-gradient method is designed. The 

conditions of achievement of the control goal are proposed. The results of numerical 

experiments for control of four-species model by two parameters (birth rates) are 

presented. 
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1. Introduction 

Stability analysis of ecosystems is 

important both for theory and for 

practice. Only stable ecosystems are 

able to exist for a long time and their 

stability limits define those maximum 

loadings which excess can lead to 

ecocatastrophes. The stability problem is 

connected with questions of an 

operation of natural populations, 

estimations of pollution limits of an 

environment, the forecast of farming. 

The classical Lotka-Volterra model 

of the population dynamics (“predator-

prey” model) and its generalization to 

the case of N species are well 

recognized in mathematical ecology and 

biophysics [1,2]. The Lotka-Volterra 

models were considered in detail in [2] 

where a special attention was paid to 

stability analysis of the mathematical 

model  of an ecosystem. In [3] these 

models as the thermodynamic systems 

were investigated, and generalized 

expressions of entropy-production for 

the systems and the study of their role in 

the analysis of ecological stability were 

derived.  

The objective of the present work is 

to develop the algorithm based on the 

speed-gradient method for control of 

oscillatory behavior of the generalized 

Lotka-Volterra model in order to 

improve its stability. Analogous results 

for the case of N=2 are obtained in [4]. 

2. Mathematical Model of an 

Ecosystem 

In a class of the ordinary differential 

equations a generalized Lotka-Volterra 

model represents the system [1]: 
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Where Ni ,..2,1 , ik  is  the speed of 

the natural increase or death rate of the 

ith kind in the absence of all other 

species: 0ik , if the ith species lives at 

the expense of others and 0ik  else.  



The parameter i  reflects the fact that 

the appearance of a predator is usually 

connected with vanishing of one or more 

preys. Quantities jiaij ,  evaluate the 

type and intensity of the interaction 

between i-th and j-th species and form 

an antisymmetric matrix. The stability of 

the ecosystem can be interpreted as the 

special behavior of solutions of (1) when 

all species stay alive, that is their 

numbers are always more than zero. 

Obviously for the stability of the system 

(1) its solutions must not approach the 

border of the positive ortant.   

3. Controlled Model 

In this paper we consider the 

controlled version of the model (1). 

Suppose the birth rate of the species 

NMlxl ,..1,   can be controlled. 

Then the interaction between the species 

is described by the differential system: 
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(2) 

Assume that there exists at least one 

positive equilibrium of (1) for some 

values of the system parameters: 

  ,,..1,0,,..,, 21 Ninnnnn iN                                            

(3) 

and consider an auxiliary function W: 
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In [1] it is shown if the condition (3) is 

satisfies, that W will be an invariant of 

(1). Since W(x) can measure the 

amplitude of oscillations, we can use it 

to achieve the desired amplitude of 

oscillations. Therefore the control goal 

can be stated in terms of achieving the 

desired level of the quantity W: 
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(5) 

Apply the speed gradient (SG) 

method [5] for solution of the problem. 

To this end introduce the function Q:                                                       
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In order to achieve the goal (5), it is 

necessary and sufficient that Q 

converges to zero. According to the SG 

method one needs to evaluate A) 

derivative (speed of changing) of Q with 

respect to the system (2) and B) the 

gradient of Q  with respect to u.  

Calculation of time derivative of Q with 

respect to the system (2) yields:  
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Partial derivatives on lu  are as follows: 
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where NMl ,..1 . According to the 

speed gradient algorithm control action 

is chosen as follows: 
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(9) 

where NMl ,..1 . The main result of 

this paper is the following proposition. 

Theorem: Assume that there exist an 

equilibrium in the system (1) such that 

(3) holds. Then either the algorithm (9) 

provides the goal (5), or the quantities of 

the controlled species tend to their 

equilibrium values. 

Proof: Consider the time derivative 

of the goal function Q (6):  
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Since Q doesn’t increase, there exists a 

limit of Q(t) as t→∞. Denote it as Q . 

Suppose the goal (5) doesn’t hold. Then 

0Q . Apparently   QtQ   for all 0t  

and 
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Integration of (11) yields 
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Therefore 
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The integrand function converges to 

zero according to Barbalat Lemma [6], 

that is   
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(14)  

Thus either the algorithm (9) 

provides the control goal (5), or the 

number of the controlled species )(txl  

converges to its equilibrium ln ■ 

Remark. In Theorem 1 it has been 

proposed that the system (1) has at least 

one positive equilibrium for some its 

parameters.  For a nonsingular matrix 

composed of ija  we always can choose 

values of the birth rate ik  such that (3) 

holds [3]. For a nonsingular matrix 

composed of ija  positivity conditions 

depending only on ija  were found in [2]. 

Finally, for both nonsingular and 

singular cases positivity conditions were 

given in [7]. 

4. Numerical experiments 

We present the results of numerical 

experiments demonstrating the 

dynamics of the system controlled by 

the algorithm (9). Below the behavior of 

uncontrolled system (1) (Fig.1) and the 

behavior of the system (2) for the case 

of controlled the third and forth species 

(Fig.2, Fig.3, Fig.4) for N=4 are shown. 

We take initial numbers of the species 

]3;5;3;2[];5;6;7;4[ 0201  xx  and the 

system parameters 
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Three versions of the desired levels of  

W are considered: 
.40*;62*;52* 321  WWW  

The coefficients in the control algorithm 

are taken as 08.043  . The 

equilibrium of the system (1) for these 

parameters is 

4;2;5;3 4321  nnnn , the 

equilibrium value of the quantity W is 

.2.51eW  
In Fig.2 and Fig.3 initial numbers 

of the species are picked such that  

*0 WWW e  , in this case value of W 

have converged to its desired level 

rather fast. For the initial numbers of the 

species in Fig.4 0* WWW e   and the 

desired level of W has not been 

achieved, but the numbers of the 

controlled species have converged to 

their equilibrium value. 

5. Conclusion 

In this work we have demonstrated 

the application of the speed-gradient 

method for solving non-traditional 

control problems of nonlinear network 

models, a special case of which is a 

Volterra model of the dynamics of the N 

species. 



The simulation results have shown 

at the smaller value of W the oscillation 

variations in the number of the species 

are lower. Thus, to improve ecosystem 

stability it is necessary to reduce the 

value of W.  The algorithm based on the 

speed-gradient method can do it with 

small control signal, which is important 

in controlling real ecosystems where 

control action should be sufficiently 

small. 

 

 

 

 
Fig.1. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of the uncontrolled system (1) for N=4 and 

initial numbers of the species ]5;6;7;4[01 x  



 
Fig.2. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of system (2) when controlling the numbers 

of the third and forth species, for N=4, ]5;6;7;4[01 x  and desired value W*=52. 

 

 
Fig.3. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of the controlled system (2) when 

controlling the numbers of the third and forth species, for N=4, ]5;6;7;4[01 x  and 

W*=69. 



 

 
 

Fig.4. Plots of the numbers of the species versus time (top left) and W versus time 

(top right) and the phase portraits (bottom) of the controlled system (2) when 

controlling the numbers of the third and forth species, for N=4, initial numbers of the 

species ]3;5;3;2[02 x  and desired value W*=40. 
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