
 
 

 

 

1. INTRODUCTION 
The problem of control with scalar input and output has 
become one of the classical problems of modern control 
theory and plenty of methods for robust control design have 
been developed. The key developments in robust control 
theory, as well as a comprehensive bibliography, can be found 
in (Polyak et al., 2002; Nikiforov, 2003). In monograph 
(Bukov, 2006) the classification of disturbances of various 
types and methods of their compensation are given.  
 
In Bukov (2006), Nikiforov (2004a,b) an internal model of 
disturbances is used to solve the problem whereas (Nikiforov, 
1997; Miroshnik et al., 2000) use the methods of the theory of 
robust and adaptive systems. The approach to the synthesis of 
static, robust controllers for linear systems that is based on the 
linear-quadratic problem that is in turn based on the 
parameterization of Lurie–Riccati equations is presented in 
(Bukov et al., 2007). Robust systems with compensation of 
disturbances that use these methods are studied in Bobtsov, 
(2003a,b) 
 
A simple robust control algorithm that remains the same for 
various types of plants is proposed in Tsykunov (2008). It is 
shown that the algorithm compensates for parametric and 
external disturbances with a given accuracy. A closed system 
works here as an implicitly given nominal model whose 
parameters are used in control.  
 
It is important to note that almost all the suggested methods 
are based on an assumption that the structure of a plant is 
known i.e. the order of a system of differential equations is 
known and parametric and external disturbances are 
unknown. There are various studies devoted to the problems 
of control with an unknown order (Tao et al., 1993; Hoang et 
al., 2007; Furtat et al., 2008). Sources (Hoang et al., 2007) 

consider control problems of linear, stationary systems with 
an unknown and constant order of numerator and 
denominator for their transfer functions. Source (Furtat et al., 
2008) considers a wider class of systems with disturbances 
that are able to influence both the parameters of the system as 
well as its order. 
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This paper considers the problem of robust control for 
interconnected systems with unknown parameters which are 
subject to the uncontrolled external and parametric 
disturbances. These disturbances may change the order of a 
system in unpredictable ways. This means that the order of a 
system is unknown and scalar input and output signals can 
only be measured. To solve the problem, a simple robust 
control algorithm is proposed that compensates for this class 
of uncertainties with a given accuracy and a finite time. Only 
the measurable variables of the local subsystems are used for 
the control i.e. control is completely decentralized.  
 
Decentralized control can be used for a wide rage of large-
scale complex systems including satellite networks, group 
flights, electric power systems, robots etc. Decentralized 
control is also very efficient when there is a need to design 
the control algorithms relying on local information. Modern 
computer networks provide an efficient infrastructure for a 
real implementation of such algorithms.  

2. PROBLEM STATEMENT 
Let us consider an interconnected system whose local 
subsystems’ dynamic processes are described by the 
following equations  
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where dtdP =  – differential operator;  

are the linear differential operators with unknown constants 
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parameters;  is a scalar control action;  is a scalar 
controlled variable in the i-subsystem which can be 
measured;  is an uncontrolled disturbance. 
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Decentralized control for such a system is defined as the 
problem of finding M  local control blocks, each of which 
only can access current information about a system.  Required 
quality of transition processes in a subsystem is defined by 
equations of the local nominal models 
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Here  are linear differential operators; ;  
are the scalar bounded control actions.  
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It is necessary to design a control system for which the 
following condition will be satisfied: 

δ<−=
∞→∞→

)()(lim)(lim tytyte miitit
 if .        (3) Tt ≥

Here δ  is the accuracy of the dynamic error ; )(tei T  is the 
time beyond of which the dynamic error should not exceed 
the value δ . It is forbidden to use measurable parameters of 
one subsystem in other local subsystems. 
Assumptions:   
i) )(),(),( λλλ mimii RQR  are Hurwitz polynomials (λ  is 

a complex variable in Laplace transformation); 
ii) the orders of ; ; ; 

 are unknown and relative degree of the 

local system 

ii nQ =deg ii mR =deg ijij nS =deg

1−< iij nn

1>−= iii mnγ ; 
iii) the upper bound iui γγ ≥ of the relative order iγ   as 

well the upper bound of the operator  are defined,  
i.e.  

iQ

ii nn ≤ ; 
iv) the orders of the polynomials  are equal to miQ uiγ ; 
v) we know the coefficients’ sings  and assume that 

; 
ik

0>ik
vi) the coefficients of the operators )(),( λλ ii QR  depend 

on the vector of unknown parameters Ξ∈ξ , where Ξ  
is a bounded set;  

vii) control actions   are bounded functions; )(tri

viii) we cannot use the derivatives  of the 
signals.  

),(tyi ),(tui )(tri

ix) the signal of local nominal model  and its 
derivatives 

)(tymi

uiγ are bounded functions; 
x) the external disturbance  is a bounded function of 

time with an unknown changes range; 
)(tfi

3. METHOD  OF   SOLUTION  
Let us first write the  in the following form: )(),( PRPQ ii

),()()(),()()( 00 PRPRPRPQPQPQ iiiiii Δ+=Δ+=  
where  is an arbitrary linear differential operator, such 
that the polynomial 

)(0 PQ i

)(0 λiQ  is Hurwitz polynomial, 

ii nQ =0deg . Then the operator  is )(PQiΔ ,deg ii nQ ≤Δ  i.e.  
if  then , and if ii QQ 0degdeg < ii QQ 0degdeg =Δ

ii QQ 0degdeg =  then 1deg −≤Δ ii nQ . Introduce the 
arbitrary linear differential operator ,  )(0 PR i

uiii nR γ−=0deg  such that the polynomial )(0 λiR  is 
Hurwitz polynomial. The structure of  is such that if )(PRiΔ

uiii nm γ−<  then uiii nR γ−=Δdeg , and if uiii nm γ−>  
then ii mR =Δdeg . This means that the above decomposition 
of the operators  is correct because )(),( PRPQ ii )(PQiΔ and  

)(PRiΔ  either have non-zero coefficients or an appropriate 
amount of their components are equal to zero. The 
decomposition (Furtat et al., 2008)  is different from the 
known methods of parameterization of the equations. 
 
Let us transform the equation of a system (1):          
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since operators and  are arbitrary, we can 
choose them in order that the following condition is obeyed 
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Let us write the equation for error )()()( tytyte miii −= , 
subtracting (2) from (4), and taking into consideration (5), 
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To obtain the main result, let's use the approach (Tsykunov, 
2008), which allows to compensate disturbance. Let choose a 
local control law in the following form  

).()( ttu iii ϑα=                                               (7)          
where 0>iα ; )(tiϑ  is an additional control action. Then the 
following equation of error can be derived from (6)  
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Signal )(tiϕ  contains all components action of which in the 
error needs to be compensated. It is necessary to extract the 
signal.  
 
Let’s define the additional loop 

)()(~)( ttePQ iimi ϑ=                                (10) 
and write the equation with the error signal 

)(~)()( tetet iii −=ζ : 



 
 

 

)()()( ttPQ iimi ϕζ = . 

If the derivatives uiγ  of the output signal  can be 
measured then defining the variation law of the additional 
control action in the following form 

)(tyi

),()()()( ttPQt iimii ϕζϑ −=−=                (11)                             
we will get the following equation of the closed loop system 
using the error equation (8)  

.                                       (12) 0)()( =tePQ imi

 
Let us show that all the signals in the closed loop system are 
bounded. It is necessary for the efficiency of the algorithm 
which will be described later. Equation (12) shows that the 
signal  and  its derivatives )(tyi uiγ  are bounded due to 
assumption x). Then from conditions of the assumptions 

ii nPQ =Δ )(deg  and because )(0 λiR  is Hurwitz polynomial 
of uiin γ−  degree we can conclude that 
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is a bounded value. It is necessary to show that the chosen 
control action is bounded. For that purpose let’s substitute 

)(tiϕ  in (11) with the statement above and resolve derived 
equation for )(tiϑ : 
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Let us substitute )(tiϑ  in equation (9) and resolve it for 
, taking into consideration following parameterization 

: 
)(tui
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From condition of assumption ii) and boundedness of )(1 tiϕ  
boundedness of local control action is followed.  )(tui

 
Because we cannot measure the derivatives, let’s formulate 
the local law of additional control action )(tiϑ  in the 
following form 
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0>μ  is small number. If we use (14) and (15) in Laplace 
transformation we’ll get the following 
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Taking into consideration (10) and statement for error signal  
)(~)()( tetet iii −=ζ  we have 
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Substituting )(tiϑ  in equation (7) with the obtained statement 
and using the original of Laplace transformation we’ll get 
control algorithm. Obviously that control law now is 
technically feasible since it contains only known or 
measurable variables.  
 
Proposition. If assumptions i) - x) are obeyed then there are 
numbers 00 >μ ,   such that under conditions 00 >T 0μμ ≤ , 

 control algorithm  0TT ≥

( )( ) )()()(11 tePQtuP imiii
ui α−=−+μ γ                 (16) 

guarantees that target condition (3) is obeyed, where 0>iα . 
 
It is necessary to note that the described algorithm remains 
invariant if there is state delay in a system as well as in the 
case when a system is in a steady state with unknown 
parameters with known boundaries.  
 
Proof.  Let’s consider vectors of the estimation error of 
derivatives  )(tP i

kζ
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Here the vector  has first component equal to -1. If 
to prove that the value 

iii hbF =−1

)(tikη  is small, then from condition 
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ear to . From (15) we’ll get the equation of dynamic 
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Taking into account that the additional control action is 
formulated as (14), we can transform the equation of error 
into the following form  
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equation (17) into vector-matrix form. As a result we’ll get 
the following equations set of the closed loop system: 
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where μμμ == 21 . We’ve got singularly perturbanced 
system as μ  – small enough number. Let us use Lemma 
(Brusin, 1995). 
 
Lemma (Brusin, 1995). If a system is defined by the equation 

( ),,, 21 μμxfx =&  , where  is a continuous 
function that is Lipshits function with respect to x and in the 
case when 
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dissipation { },~)(|1 CxFx <=Ω  where  – positive 
defined continuous piecewise smooth function, then there is 
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In the case of 02 =μ  in (18) we have asymptotically stable 
system for variables )(tiε  and )(tikη , since  are 
Hurwitz matrixes. It is the same situation which we had for 
measuring the derivatives i.e. . It was proved 

that if this condition is obeyed all the signals in the system are 
bounded. It means that there is a certain region  
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where signals )(),(),( ttte iiki ζη  are within their boundaries 
for some initial conditions from .  0Ω
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then equations (18) will take the following form  

⎪
⎩

⎪
⎨

⎧

==Δ

+=
=Δ+=

.,1),()(

),()()(
),()(),()()(

201

MitCt

tBtFt
tLtetqbtAt

iii

iiiii

iiii
T
miiimii

η

θμηημ
εεε

&

&

         (20) 

Evidently that condition (19) was obeyed if to take Lyapunov 
function for   iF
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where the positive defined symmetric matrixes  are 
determined from equations solution  
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where 01 >iρ , 02 >iρ , , . Thus 
in accordance with Lemma (Bukov et. al., 2008), there is 

011 >= T
ii QQ 022 >= T
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00 >μ  such that if 0μμ <  then  remains dissipative 
region of system (18).  
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However it is necessary to note that keeping the dissipative 
region doesn’t guarantee that the set of attraction 1Ω  remains 
the same in a singularly perturbed system. 
 
Let us calculate the full derivative of function (21) on 
system’s trajectories (20), taking into account equation (22) 
and assigning 021 μμμ == : 

( ) (
−−Δ+

+−−= ∑
=

2

0

2
1

1
2

1
1

)()()(2

)()()()(),(

ttqbHt

tQttttV

i
i

i
T
miii

T
i

ii
T
iii

M

i
ii

η
μ
ρ

ε

εεερηε&

 

.)()(2)()(1
22

0
⎟⎟
⎠

⎞
+− tBHttQt iii

T
iii

T
i θηηη

μ
   (23) 

Let us use estimations 
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are the minimal and maximal characteristic numbers of the 
mentioned matrixes. Using those estimations into (23) we’ll 
get 
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the following inequality is correct: 
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we can see that if to choose 0μ  small enough we get the 
following region of attraction: 
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Inserting the required value  from the target condition (3) 
into the right part and taking into consideration the 
inequalities 
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we get the estimation of the value δ in the target condition (3) 
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that shows that there are numbers 0μ  and   guaranteeing 
that target condition will be obeyed. Thus for 

0T

0μμ ≤  varying 

i1ρ  in (24) and μ , we can get the required value δ  in the 
target condition (3).  
 

 
 

Fig. 1.  The structure scheme of robust control system 
 

4. EXAMPLE  

As an example, the system can be used to solve the problem 
of decentralized control of the trajectory of the group of the 
pilotless aircrafts of different types in the horizontal plane. 
The aircrafts do not exchange data with each other. Trajectory 
control for each aircraft is performed using radio commands 
from a ground-based control station.    

First, the robust local etalon models (2) are selected. Then, we 
generate the local regulators for each aircraft using (16). 
Using numerical analysis the group flight under wind 
disturbance is considered.. The obtained results demonstrate 
the efficiency of the suggested approach to decentralized 
control.  

Unlike the work (Bukov et. al., 2008; Krasovsky et. al., 1986) 
a broader class of the systems is considered here because of 
taking into account the ability of the systems to adapt to 
external, parametrical, and structural disturbance. Let us 
consider for simplicity the flight of two aircrafts (the number 
of the aircrafts in the model can be easily increased). 
 
The first aircraft will be the lead aircraft and the second one is 
a wingman aircraft. The wingman aircraft is controlled by the 
speed according to a predefined program. That aircraft has to  

 
Fig. 2. Model of the aircraft group flight   
 
keep the distance 2DΔ . Let us also assume that the wingman 
can measure this distance. The change of the distance is 
described by the equation . 21 VVD −=Δ &

The speed  is defined by the dynamics of the lead aircraft 
and  is defined by the wingman aircraft. If we introduce 
the model  
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with the distance 2DΔ  as output, we will get two 
interconnected systems. Let, for example, nitially 21 VV = , 
then constD =Δ 2 . If we change the thrust lever of the lead 
aircraft, we change the speed of the aircraft; the equation 

21 VV =  is no longer valid and the distan 21 V−   
will be changed as well. If the goal is to keep the distance 

ce VD =Δ & 

constD =Δ 2 , the control of both aircrafts should be 
performed in a coordinated way. Any time when the speed of 
the lead aircraft is being changed, we have to change the 
speed of the second aircraft.  
 
Let us assume that 1) the aircrafts do not exchange the 
information; 2) the distance   can be measured by the 
wingman. Under these assumptions we may treat the problem 
as the problem of the decentralized control (16). Here 

2DΔ

VΔ  is 
the increment of the speed with respect to the balance value 

(m/c); 0V PΔ  is the increment of the thrust with respect to the 

balance value (n); 0P dtdUU xx =&  is the change of the wing 
speed on the axis ОХ,  is the wing speed on the axes ОХ; xU
αΔ  is the increment of the angle of attack to the balance 



 
 

 

value;  is the increment of the pitch angle;  is the 

engine throttle;  (free fall acceleration); 

ΔΘ руддΔ

gax =Θ

m
a P

x
1

≈ , 

where m is the aircraft’s weight;  takes into account the 
change of engine throttle when the speed is been changed 
(can be assumed = 0); the constant  of the engine depends 

on the flight regime (Polyak et. al., 2002);  allows to take 
into account the change of the engine throttle when changing 
the thrust lever. We can assume for the simplicity that this 
dependency is linear. Then, if thrust-to-weight ratio equal to 
0,7, we get 

V
дk

дT
рудд
дk

                           
рудmaxрудmax

д
д g

mPk руд

δδ
7,0max == .  

Additional assumption is that the aircraft is highly 
maneuvering.  
 
The inputs of the system are unknown wing and other 
uncontrolled dynamic disturbances. If the distance is 
relatively small (10 – 50 m), then we may assume the same 
wing for each aircraft. Otherwise we have to take 
into account the order in which the aircrafts meet the blasts.   

21 xx UU =

There are two control channels for the group flights: 
• speed / distance control using the engine throttle руддΔ ; 
• altitude control using the elevator вδΔ . 
 
It is desirable to have the independent channels. The example 
is the following control law: 

)( HHkkk 0
H
ввzвв

z −+Δ+=Δ δ
ϑ
δ

ω
δ ϑωδ , 

0H  and H  is the targeted and current altitudes  

      ( ). ( )ΔΘ+≈Θ+=Δ xx UVUVH sin)(&

This altitude control creates a disturbance in the speed control 
channel which has to be compensated.  

5. CONCLUSION 
The Paper considers the problem of decentralized control with 
an nominal model for interconnected system with unknown 
parameters and an unknown order when derivatives of input 
and output signals of the local subsystems cannot be 
measured.  

Considered robust control system allows compensating 
parametric and external disturbances with given accuracy δ  
for the period of time T . Values δ  and  can be small 
enough using the appropriate parameters of the closed loop 
system. It is necessary to note that the closed loop system is 
functioning as an implicitly defined nominal model and 
parameters of the model are used in control algorithm.  

T
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