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Abstract
In this work we present a mathematical modeling

of astable (or free-running) multivibrator oscillators.
Then, using this model, we develop an algorithm to
synchronize two multivibrator oscillators. Lyapunov’s
theory is employed to validate our design. Numerical
and experimental results are given to support our find-
ings.
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1 Introduction
A multivibrator system is an electronic circuit that
switches rapidly by means of positive feedback be-
tween two states. There are three types of multivi-
brator circuits depending on its realization: astable,
monostable, and bistable. Here, we are interested in the
astable multivibrators, also called free-running multi-
vibrators, because they are used in some timing event
devices, and they can be set by a suitable and simple
electronic network [Franco, 2002]. These oscillators
are not stable in either state (it continually switches
from one state to the other). Moreover, these devices
do not require an input such as a clock pulse.
From the mathematical modeling point of view, a

mathematical representation able to capture the peri-
odic behavior of astable multivibrators is an important
issue to study them. On the other hand, this mathemati-
cal representation can be employed, for instance, to de-
sign a synchronization algorithm between two astable
multivibrators, among other topics. To the best author
acknowledgement, a practical mathematical model of
astable multivibrator systems has not been released.
Synchronization can be understood as the coordina-

tion of events to operate a system in unison. Oscillators
synchronization is an important issue, for instance, in
some synthesizers with two or more voltage-controller-

oscillator. Or to synchronize digital devices that are
sharing data, and so on. Moreover, and according to
[Dodla, Sen and Johnston, 2003], coupled limit cycle
oscillators (a kind of synchronization) have been stud-
ied to understand synchronization phenomena in var-
ious physical, chemical, and biological systems. An-
other instance is the mutual synchronization of inter-
acting oscillators which has been observed in all fields
of physics [Klinshov, 2012]. Finally, synchronization
of chaotic oscillators has been extensively studied (to
name a few, see [Chen, 2005], [Feki, 2009], [Tan,
Zhang and Yang, 2003], and [Kuntanapreeda and Sang-
pet, 2012]). So, synchronization is a topic to learn more
about systems.
Here, we use our mathematical model to synchronize

two free-running multivibrator oscillators. We prefer
to use the master-slave approach because this approach
has been extensively used. The proposed synchroniza-
tion scheme is validated by invoking Lyapunov’s the-
ory. Moreover, numerical and experiential results are
granted to support our findings. In resume, the contri-
butions of this paper are modeling and synchronization
of free-running multivibrator oscillators.
The rest of the this work is structured as follows. Sec-

tion 2 shows analysis and modeling of free-running
multivibrator oscillators. A numerical simulation is
granted to support our mathematical model. Section 3
is dedicated to the synchronization problem statement
and a solution to it using Lyapunov’s theory and our
mathematical model. Numerical experiments are given
too. Experimental results are realized in Section 4. Fi-
nally, conclusions are stated in Section 5.

2 Astable Multivibrator Oscillators: Analysis and
Modeling

The basic free-running multivibrator circuit is shown
in Fig. 1 [Franco, 2002]. Although the 301 operational
amplifier (op-amp) is preferred for this kind of applica-
tion, we use the traditional LM741 op amp (see Section
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five). In the circuit, the op-amp has a positive-feedback
resistances R1 and R2 forming an inverting Schmitt
trigger configuration. This positive-feedback produces
toggles between one state (when Vo = VSAT ) and the
other (when V0 = −VSAT ). See Fig. 2. This because
the positive-feedback increases the op-amp gain,
which helps to toggle very fast between these states.
The capacitor C is connected to the non-inverting
input of the op-amp with its other end connected to
ground. This capacitor, together with the resistance
R, form a RC integrator. This RC integrator controls
the timing of the system 1. From the circuit, we have
±V p = ±Vo(

R2

R1+R2
) = ±VSAT (

R2

R1+R2
).
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Figure 1. Basic astable multivibrator circuit.
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Figure 2. Waveforms for the free-running multivibrator (±VSAT

are the saturating voltages).

Let x1 := x1(t) be the capacitor voltage, and assume
that | x1(0) |< V p (this assumption is a realistic one
because when the circuit is initially power on, this
initial condition is very close to zero). The waveform
x1(t) is also shown in Fig.2. Then, and from Fig.
2, the operation of the astable multivibrator can be
summarized as follows.

1) If | x1(t) |≤ Vp and ẋ1 > 0, then

ẋ1 = α(−x1 + VSAT ), (1)

2) if | x1(t) |≤ Vp and ẋ1 < 0, then

1A formula to estimate the oscillation frequency is [Franco,
2002]: f = 1

2RCln(1+2R1/R2)
.

ẋ1 = α(−x1 − VSAT ), (2)

3) if | x1(t) |> Vp and ẋ1 > 0, then

ẋ1 = α(−x1 − VSAT ), (3)

and

4) if | x1(t) |> Vp and ẋ1 < 0, then

ẋ1 = α(−x1 + VSAT ), (4)

where α = 1
RC . Combining (1) and (2), yields:

a) if | x1(t) |≤ Vp, then

ẋ1 = α(−x1 + VSAT sgn(ẋ1)). (5)

And combining (3) and (4), we have:

b) if | x1(t) |> Vp, then

ẋ1 = α(−x1 − VSAT sgn(ẋ1)), (6)

where sgn(·) is the signum function.
Finally, combining (5) and (6), we obtain:

ẋ1 = α(−x1 − VSAT sgn(ẋ1)sgn(| x1 | −Vp)) ,

| x1(0) |< Vp. (7)

The system (7) has the disadvantage that the right
hand-side depends on ẋ1. One option to avoid it is to
use the system shown Fig. 3 to estimate time deriva-
tives 2. If a is too small, then the block diagram shown
in Fig. 3 will be similar to a differentiator. Using the
state space representation of the system in Fig. 3, to-
gether with (7), we arrive to the next dynamic model of
the astable multivibrator oscillator able to capture the
evolution of x1(t) similar to the one shown in Fig. 2:

ẋ1 = α(−x1 − VSAT sgn(y1)sgn(| x1 | −Vp)),

| x1(0) |< Vp (8)

ż1 = −1

a
(z1 + x1), (9)

y1 =
1

a
(z1 + x1). (10)

Fig. 4 shows a simulation result of the system (8)-(10)
with α = 0.1, Vp = 1, VSAT = 2, and a = 0.01.

2There are other transfer functions to estimate the derivative of a
signal, but we prefer the one shown in Fig. 3 because its simplicity.
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Figure 3. A time derivative estimator: s is the Laplace’s variable.

Figure 4. Simulation result (x1(0) = 0.8 and z1(0) = 0).

3 Synchronization Design
Consider the driven (or master) system given by (8)-

(10), and conceive the following receiver (or slave) sys-
tem:

ẋ2 = α(−x2 − VSAT sgn(y2)sgn(| x2 | −Vp)) + u,

| x2(0) |< Vp (11)

ż2 = −1

a
(z2 + x2), (12)

y2 =
1

a
(z2 + x2), (13)

where u is the control input to be designed such that
the next synchronization objective is satisfied:

lim
t→∞

x2(t) = x1(t). (14)

By defining the synchronization error e(t) = x2(t)−
x1(t), and using the Lyapunov function:

V (t) =
1

2
e2, (15)

its time derivative along the system trajectories (8)-(10)
and (11)-(12), yields,

V̇ (t) ≤ −αe2 + e(u+ 2α). (16)

Designing:

u = −ksgn(e) = −ksgn(x2(t)− x1(t)), k > 2α,
(17)

we obtain V̇ (t) ≤ −αe2, implying that our synchro-
nization objective is satisfied. In resume, we have the
following result.

Theorem 1. Given the master system (8)-(10), and the
slave system (11)-(12); utilizing the control algorithm
(17), the synchronization objective (14) is satisfied.

Figure 5 shows numerical results of the synchro-
nization process using α = 0.1, Vp = 1, VSAT = 2,
a = 0.01, k = 1, and x1(0) = 0.8 and x2(0) = −0.8
(z1(0) = z2(0) = 0).

Figure 5. Simulation result of the synchronization process.

4 Experimental Results
For the experimental evaluation of our theoretical

findings, we built the electronic circuit show in Fig. 6.
The circuit is realized using R1 = R2 = R = 1kΩ,
and C = 220µF . In this figure, we have the master
and slave systems, and the synchronization control law
realized using the third op-amp in open-loop connec-
tion. In this configuration, this op-amp will produce
the control law (17) with its maximum possible value
of k(= VSAT ), but is it applied to the slave system as
follows:

ẋ2 = α(−x2 − ksgn(x2 − x1)). (18)

Using the same Lyapunov function v(t) = 1
2e

2, with
e = x2 − x1, its time derivative along the system tra-
jectories (8)-(10) and (18), yields:

V̇ (t) ≤ −αe2 − α | e | (k − 1). (19)

So, if k > 1, then V̇ (t) ≤ −αe2, satisfying the syn-
chronization objective (14).
In our circuit, all operational amplifiers are the LM741

integrated circuits. The capacitor Cx = 0.033µF 3 is
employed to filter corrupted signals . Figure 7 shows

3In our experiment, this capacitor seems unnecessary. But, it is
correct to use it.
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a picture of the circuit shown in Figure 6. We use the
PicoScope PC oscilloscope software to capture the out-
put signals (V ′

os) on both systems, the master and the
slave systems. This PicoScope device is connected to
a Laptop (see Fig. 8). Figure 9 shows these output
signals when the synchronization control law is inac-
tive. Figure 10 displays the experimental result when
the synchronization control law is activated.
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Figure 6. Electronic circuit.

Figure 7. A picture of the circuit realization.

Figure 8. A picture of the experiment set-up.

Figure 9. Experimental result of the system without the synchro-
nization control law (blue-line is the master’s output, and red-line is
the slave’s output).

Figure 10. Experimental result of the system with the synchroniza-
tion control law activated (blue-line is the master’s output, and red-
line is the slave’s output).

5 Conclusions
This paper has introduced a mathematical model of

free-running multivibrator oscillators together with a
simple synchronization algorithm to synchronize two
astable multivibrator oscillators. Using this synchro-
nization algorithm, an experimental circuit realization
of it was possible.
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