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Locally optimal control is designed to minimize the phase and frequency deviations from resonance in a
nonlinear system with bounded perturbation. The control strategy is independent of the shape of
perturbations and the structure of the conservative subsystem. As an example, the phase and frequency
control of forced oscillations in a system of weakly coupled oscillators is constructed.

I. INTRODUCTION

This paper considers the problem of keeping the system in
a stable near-resonance state as a control problem. For a
wide range of oscillatory models the analysis of weakly
perturbed motion in the neighbourhood of resonance is
reduced to the analysis of “an equivalent pendulum” [1].
The phase and frequency deviations from the resonance
surface correspond, respectively, to the phase and the
frequency of the pendulum oscillations. The phase plane of
the pendulum is divided into the domains of libration and
rotation separated by the separatrix of resonance. The
domain of libration Σ is interpreted as an admissible
domain; the passage through the separatrix is associated
with failure of resonance. The control task is thus to keep
the system within Σ on the maximum time interval.

The pendulum-like model allows making use of the
well-developed asymptotic methods of control of
oscillations  [2 - 4]. However, the solution of resonance
control problems for multidimensional systems is tedious,
and the closed-form asymptotics is unavailable.

Locally optimal control strategy is considered as an
alternative approach to motion control. As known [5],
locally optimal control closely corresponds to the solution
of the maximum residence time problem. However, the
locally optimal control design is much simple than the
direct solution of the residence time problem. Then, as
shown in the paper, this approach does not require the
solution of the maximum principle or dynamic
programming equations. This makes locally optimal
control a proper tool for controlling systems with uncertain
perturbations. The paper demonstrates an application of the
locally optimal control approach to the problem of near-
resonance control in a nonlinear system with unknown
perturbations. We write the equations of motion in the
near-resonance domain, introduce the local criterion of
optimality, and construct the solution of the control
problem. Then we specify the phase and frequency criteria
of local optimality and define the phase and frequency
control associated with these criteria. We show that the
phase and frequency control is asymptotically equivalent to
locally optimal control. As an example, we construct the
phase and frequency control for a nonlinear system of
coupled oscillators.

II.BASIC METHODOLOGY

2.1.  The equations of motion

For brevity, we consider a two-frequency system with a
scalar slow variable, scalar perturbation and scalar control.
The MIMO system may be studied in a similar way.

The equations of motion are reduced to the standard
form [1]

x�  = εf(x,θ1,θ2) + ε 
nF(x,θ1,θ2)u + ε∆(x,θ1,θ2,ξ(t)),            (1)

iθ�  = ωi(x) + εfi(x,θ1,θ2) + ε 
nGi(x,θ1,θ2)u + ε∆i(x,θ1,θ2,ξ(t)),

i = 1, 2.

Here 0 < ε << 1, the scalar variable x ∈ X describes the
slow evolution of the system, θi(mod 2π), i = are the fast
scalar phases, control u ∈U ⊂ R1. The coefficient ε 

n shall
be so chosen that control would remain weak but
counteracting the external perturbation.

Following [1], we specify the resonance relationships
between the system frequencies.  Consider the subsystem

x�  = εf(x,θ1,θ2), iθ�  = ωi(x).                                               (2)

Define the time average of the function f(x,θ1(t), θ2(t)) as
the function of the slow variable x and the frequencies ω1,
ω 2

<f> = Φ(x, ω 1, ω 2) = ∫∞→

T

TT
0

1lim f(x, ω1t, ω 2t)dt.

The function Φ(x, ω1, ω2) is assumed to be continuous
uniformly in all variables except for a set (ω1, ω2) of the
solutions of the equation m1ω1 + m2ω2 = 0, where m1 and
m2 are some integers, m1

2 + m2
2 ≠ 0. Define the function

ρ(x) = m1ω1(x) + m2ω2(x) = 0                                          (3)

Formula (3) determines the resonance frequencies of
system (2). Let Eq. (3) have a unique solution x* such that

ρ(x*) = 0,   dρ(x*)/dx  = r ≠ 0.                                          (4)

We presume that
1°. The right-hand sides of system (1) are 2π − periodic



in θ1, θ2, and smooth enough in all variables;
2°. The perturbation ξ(t) is uniformly bounded, |ξ(t)|≤ ξ0,

- ∞ ≤ t ≤ ∞.
3°. In the neighbourhood of x = x* the perturbation ξ(t)

does not yield a new resonance relationship similar to (3).
It follows from Assumptions 1°-3° that in the

neighbourhood of resonance the solution of system (1)
exists and the requisite transformations remain valid for
any admissible control u ∈ U.

Let Eqs. (3), (4) determine the stable resonance state of
system (1). Perturbation may result in escaping from the
near-resonance domain. The control task is to keep the
frequencies in the near-resonance domain in the presence
of perturbation. We shall describe this requirement as a
control problem.

Following the standard approach [1], we introduce the
variables v and ϕ characterizing the frequency and phase
deviations in the near-resonance domain. As known [1], the
frequency deviations in the near-resonance domain are of
order µ = ε1/2. Thus we write

µv(x) = ρ(x) = m1ω1(x) + m2ω2(x),   ϕ = m1θ1 + m2θ2.       (5)

Conditions (4), (5) allows representing the variables in
the near-resonance domain in the form

x = X(µv) = x* + µx1 + µ  
2,  x1 = r 

−1v,

θ1 = θ, θ2 = 1
2
−m (ϕ − m1θ).                                               (6)

Inserting (5), (6) into system (1), we obtain the equations
of motion in the near-resonance domain in the form

v�  = µ[β(ϕ) + b(ϕ, θ) + ∆*(ϕ, θ, ξ(t))] + µ2n-1F*(ϕ, θ)u  + 

µ 
2R1(v, ϕ, θ, ξ(t), u, µ),

ϕ�  = µv + µ2nG*(ϕ, θ)u + µ 
2R2(v, ϕ, θ, ξ(t), u, µ)],          (7)

θ�  = ω* + µ κ v + µ2nG1*(ϕ, θ)u + µ� 2R3(v, ϕ, θ,ξ(t), u, µ)],

where the residual terms Ri i = 1,2,3, vanish as µ → 0, and

θ = θ1, ω* = ω1(x*), κ = ω1x(x*),

β(ϕ) = <f*(ϕ, θ)>, b(ϕ, θ) = f*(ϕ, θ) − β(ϕ),

Φ*(ϕ, θ) = r−1Φ(x*, θ, θ2(ϕ, θ)).                                       (8)

Here <f*(ϕ, θ)> denotes the averaging in θ, Φ and Φ*
are the vectors with the components (f, ∆, F, G1,2) and (f*,
∆*, F*, G1,2*), and

G*(ϕ, θ) = m1G1*(ϕ, θ) + m2G2*(ϕ, θ)                             (9)

We now define the admissible domain of motion.
Consider the slow subsystem of (3)

v�  = µβ(ϕ),  ϕ�  = µv.                                                       (10)

Equations (10) describe motion of the pendulum-like
system with energy E = µH(ϕ,v), where

H(ϕ, v) = Π(ϕ) + v2/2.                                                     (11)

The cos-like potential Π(ϕ) is defined by the equation
Πϕ(ϕ) = −β(ϕ). For clarity we take Π(0) = 0. For the typical
pendulum-like model we have Π(ϕ) = Π(−ϕ), β(−ϕ) =
−β(ϕ) [1]. Let ϕ = 0 and ϕ = ± ϕ 

s
 be the solutions of the

equation Πϕ(ϕ) = −β(ϕ) = 0 corresponding to the minimum
and the symmetric maxima of the function Π(ϕ),
respectively. It follows from the minimum condition that
Πϕϕ(0) > 0, βϕ(0) < 0. Definition (5) and inequality βϕ(0) <
0 imply that the point O: {ϕ = 0, v = 0} is the stable steady-
state solution of system (10) associated with the stable
resonance in the unperturbed system.

The phase plane of the pendulum-like system (10) is
divided into the domains of libration and rotation separated
by the separatrix; the passage from libration to rotation is
associated with failure of resonance [1]. The domain of
libration Σ can thus be treated as the reference domain. The
control task is not so much to minimize deviations from the
reference point O but to prevent the perturbed system from
leaving the domain Σ.

2.2. The control problems

We consider system (7) as the equations of the perturbed
motion of the pendulum (10). Introduce a measure of
deviations from the steady-state point O as

h = v2/2  + kϕ2/2,                                                             (12)

where k > 0 is a weight coefficient. Define the domain Σh ∈
int Σ such that (ϕ, v) ∈ Σh ⇒ h ∈ [0, h*). The control task
is to keep the function h(t) within the interval [0, h*) on the
maximum time interval.

The associated locally optimal control problem is
reduced to minimization of the derivative

J(u) =� h� (t) � ����

at each moment t [5]. The control constraint is taken in the
form |u| ≤ U0 . The locally optimal control is thus defined as

uopt = 
0||

minarg
Uu ≤

J(u).                                                       (14)

The physical meaning of this approach is quite obvious.

If h� > 0, the function h increases, and the control task is to
minimize the velocity of the outward motion from the core

of the domain Σh.  If h�  < 0, the function h decreases, and
the control task is to maintain motion toward the core of
the domain Σh.

Calculating (13) by virtue of Eqs (7), we find

h� = v v�  + kϕϕ�  =  [µ2n-1F*(ϕ, θ)v + µ2nkϕG*(ϕ, θ)]u +

µR(ϕ, v, θ, ξ(t), µ, µu),                                           (15)

where R is the residual term insubstantial for the further
analysis.

It follows from (14), (15) that

uopt = −U0sgn[µ2n-1F*(ϕ, θ)v + µ2nkϕG*(ϕ, θ) + O(µ2)].  (16)                 

Introduction of the parameter µ allows constructing of a
relatively simple near-optimal control u* such that u* →
uopt as µ → 0. We consider near-optimal control for two



models of the controlled systems.

2.2.1. The frequency control. Let F(x, θ1, θ2) ≠ 0, n = 1. In
this case the control term in the first equation of system (7)
is of the leading order, the control terms in the other
equations are negligibly small. This yields

u* = −U0sgnF*(ϕ, θ)sgnv                                                (17)

as µ → 0. Near-optimality of control (17) can be proved in
the standard way.

Under the assumptions accepted in this item, control u
counteracts the frequency deviations v but it is negligible in
the last equations of system (7). This allows exclusion of
the phase dependence from the cost criterion. Introduce the
function

hv
 = v2/2                                                                            (18)

as a measure of the frequency deviations from resonance.

Let control uv minimize the derivative vh� (t), that is

J v(u) = vh� (t),  u
v
  = 

0||
minarg

Uu ≤
J 

v(u).                               (19)

In the very same way as before we find

uv
  = u* = −U0sgnF*(ϕ, θ)sgnv.                                       (20)

Equality (20) implies that criterion (18) may be used
instead of (13). The associated control laws (17) or (20)
can thus be interpreted as the frequency control.

2.2.2. The phase control. If F(x, θ1, θ2) = 0, we take n = ½.
In this case control u is not involved in the main terms of
the first equation in (7) but becomes substantial in the
second equation.

It follows from conditions (14),  (15) that

u* = − U0sgnG*(ϕ,θ)sgnϕ                                              (21)

as µ → 0. This implies that control (21) directly
counteracts the phase deviations. Now we introduce the
function

hϕ = ϕ2/2                                                                          (22)

as a measure of the phase deviation and find control uϕ

minimizing the derivative ϕh� (t). Calculating ϕh� (t) by
virtue of Eqs (7) (n = ½) and omitting the higher order

terms, we obtain ϕh� = ϕ� ϕ = µ[v + G* (ϕ, θ)u]ϕ , as µ →
0, and, therefore,

uϕ = u* = − U0sgnG* (ϕ, θ)sgnϕ.                                    (23)

Hence, in case F = 0 the phase criterion (22) may be
used instead of (13). The associated control law (23) can be
interpreted as the phase controls.

2.3. Locally optimal control as the solution of the
maximum residence time problem

We demonstrate that locally optimal control (14)
corresponds to the solution of the maximum residence time
problem. Let (ϕ u, vu) be an orbit of system (7) governed by
control u, hu be function (12) calculated along the orbit (ϕ u,
vu) starting at the point O at t = 0. Let Tu be the first

moment the function hu reaches the upper admissible value
h*. In case u = uopt, we denote hu = h0, Tu = T0. We show
that

T0 = u

Uu
T

0||
sup
≤

To this end, we write

h* = hu(Tu) = ∫
uT

u dtth

0

)(� .

By definitions (13), (14), h0(Tu) < hu(Tu) = h* for any Tu.
This means that the locally optimal system does not reach
the boundary of the admissible domain by the moment Tu,

and that is T0 = u

Uu
T

0||
sup
≤

.

III. THE FREQUENCY CONTROL OF COUPLED OSCILLATORS

Equalities (20) and (23) imply that criteria (18) or (21) can
replace the general criterion (13). We illustrate this
approach by an example.

Consider a linear resonance circuit weakly connected
with a nonlinear system. The linear circuit enhances a weak
periodic signal of frequency Ω; then the transformed
enhanced signal is fed to the input of the nonlinear system.
In the absence of perturbations the nonlinear system
generates oscillations of a resonance frequency correlated
to Ω. The control task is to sustain the resonance mode of
nonlinear oscillations in the presence of perturbation.

Next we investigate different control strategies.

1. Let the equations of motion have the form

),,,(sin))(,( 11
2 ψψεΩεξψεδψΩψεψ ����� xxstatb +=+++ ,

uxxqtxxxnx εψψεξεδφε +=+++ ),,,())(,()( 22 ����� .      (24)

Here φ(x) = dΠ(x)/dx, Π(x) is the potential of the
conservative counterpart of the nonlinear system. The
perturbations ξ1,2(t) satisfy the assumptions of Section 1.
The terms q(ψ, ψ� ) and s(x, x� ) describe the interaction of

the subsystems. Control u is designed by the criteria of
Section II.

Using the standard transformations [1], we reduce (24)
to the standard form (1). Following [1], we introduce the
change of variables ψ, ψ�  → R, θ1, and x, x�  → y, θ2. The

slow variables R and y are defined as the amplitude of
oscillations of the linear subsystem and the partial energy
of the nonlinear subsystem, respectively, that is

R2 = (Ω 
2ψ 

2 + ψ� 2),    y = )(2
2
1 xx Π+� ,                         (25)

θ1 and θ2 are the associated fast phases with the
corresponding angular frequencies Ω and ω(y). Substituting
the obtained functions ψ(R,θ1), x(y,θ2), etc., in Eqs (24) and
reproducing the transformations of [1], we obtain the
system



R� = 
Ω
ε− [Ψ(R, y, θ1, θ2, θ3) + ∆1(R, θ1, ξ1 (t))]sinθ1,

y�  = ε {f(y,θ2) + [Q(R,y,θ1,θ2)+ u] x� (y,θ2) + ∆2(y,θ2, ξ2(t))},

θ� 1 = Ω 
RΩ

ε− [Ψ(R, y,θ1, θ2, θ3) + ∆1(R,θ1, ξ1(t))]cosθ1,

θ� 2 = ω (y) + ε
y∂

∂ω
{f(y, θ 2) �� �Q(R, y, θ1, θ2) + u] x� (y,θ 2) +

∆2 (y, θ 2, ξ 2 (t))},

θ� 3 = Ω,                                                                           (26)

As shown in Section II, the form of the coefficients,
independent of control u, is insubstantial. It is useful to
mention that, despite the complicated structure of system
(26), the resulting control strategy is independent of the
transformations performed and has a simple physical
meaning.

We investigate the main resonance, at which

ρ(y*) = ω(y*) − Ω  = 0, dρ(y*)/dy = dω(y*)/dy = r ≠ 0. (27)

As in (5), we introduce the variables

ϕ = θ2 − θ3, ϕ1 = θ1 − θ3, θ3 = θ,

µv = ρ(y) = ω(y) − Ω ,  µ  = ε1/2 .                                     (28)

Substituting (27), (28) into (26) and ignoring the
insubstantial higher-order terms, we obtain the system

v�  = µ[F*(ϕ, θ)u + V(R, v, ϕ, θ, ξ2(t))],  ϕ�  = µv,

R�  = µ2P1(v, R, ϕ, ϕ1, θ, ξ1(t)),

ϕ� 1 = µ2P2(v, R, ϕ, ϕ1, θ, ξ1(t)),                                       (29)

θ�  = Ω ,

where

F*(ϕ, θ) = r−1 x� (y*, θ + ϕ),                                             (30)

the other coefficients are unimportant.
System (29) does not allow separation of a conservative

subsystem similar to (10). However, as seen from (29),
control u affects directly the frequency deviation v. Hence,
control can be chosen by criterion (19). By the same
arguments as above, we obtain the frequency control

u 
v = −U0sgn F*(ϕ, θ)sgn v                                              (31)

coinciding with (20). Using the representation (30) we
obtain the associated feedback control in the form

uv = − U0sgn(r−1 x� )sgn[ω(y) − Ω ].                                 (32)

The only parameter requisite for the control design is
sgnr = sgnωy(y*). This parameter can be found without
calculating the frequency ω(y), namely, r > 0 if the system
is “hard”, and r < 0 if the system is “soft” in the
neighbourhood of the point y*. The physical meaning of
solution (31) is obvious. Let r > 0, that is an increase of the
nonlinear subsystem energy y entails an increase of the
frequency ω. Let ω(y) > Ω at some moment t. In this case

control (31) takes the form uv = − U0sgn( x� ). Control of this
type slows down the motion, diminishes the system energy
and, as a result, diminishes the frequency ω(y). If ω(y) < Ω
at some moment t, control uv = U0sgn( x� ) acts in the
opposite direction.

2. Let control u acts upon the excitation frequency. The
equations of the controlled motion take the form

),,,(sin))(,( 311
2 ψψεθεξεδψΩψεψ ����� xxsatxb +=+++ ,

),,,())(,()( 22 ψψεξεδφε ����� xxqtxxxnx =+++ ,              (33)

θ� 3 = Ω  + ε 
1/2u.

The right-hand sides of Eqs (33) use the same notation
as Eq. (24). In the same way as above we obtain the
equations of motion in the near-resonance domain

v�  = µV,   ϕ�  = µv −µu,

R�  = µ2P1, ϕ� 1 = −µu + µ2P2 ,                                          (34)

θ�  = Ω + µu.

where P1,2  and V are defined as in system (29). Control u is
involved in three equations of system (33). In case the task
is to sustain the resonance oscillations of the nonlinear
subsystem regardless the dynamics of the linear circuit, we
can consider the subsystem for the variables (ϕ, v) and
construct a control minimizing criterion (22). Arguing as
above, using formula (21), and considering G* = −1, we
obtain

u 
ϕ  = U0sgnϕ.                                                                  (35)
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