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Abstract
An original method for solving the problem on

transient vibrations of rectangular plates in viscous
medium, when the viscoelastic features are described
by fractional derivatives, has been presented in this ar-
ticle. It is based on the assumption that each mode
of vibrations has its own damping coefficient and its
own retardation time. The Laplace integral transform
method is employed as a method of solution, which is
followed by the expansion of the desired functions in
series with respect to eigenfunctions of the problem.
As this takes place, during the transition from image
to pre–image, the nonrationalized characteristic equa-
tion with fractional powers is solved by the method
suggested by the authors. The solution is obtained in
the form of the sum of two terms, one of which gov-
erns the drift of the system’s equilibrium position and
is defined by the quasi–static processes of creep occur-
ring in the system, and the other term describes damped
vibrations around the equilibrium position and is deter-
mined by the systems’s inertia and energy dissipation.
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1 Introduction
The notion of modal viscosity is often used for analyz-

ing damped vibrations of structures, i.e., it is assumed
that each mode of vibrations has its own viscous co-
efficient. Such an assumption is corroborated by ex-
perimental data obtained via ambient tests of various
structures and its elements [Abdel–Ghaffar and Hous-
ner, 1978; Abdel–Ghaffar and Scanlan, 1985; Clough
and Penzien, 1975]. For theoretical investigation of lin-
ear vibrations of mechanical systems, along with the
modal viscosity the Rayleigh hypothesis is of frequent
use [Clough and Penzien, 1975], which for ordinary
Newtonian viscosity µẋ, where x is the displacement,
and an overdot denotes time-derivative, lies in the fact

that the viscosity coefficient µ is a linear combination
of the system’s rigidity E and its mass m, i.e.,

µ = αE + βm, (1)

or

µ

m
= ω2τ, (2)

where α and β are coefficients of proportionality, ω2 =
Em−1, and τ = α+ βω−2 is the retardation time.
If Newtonian viscosity is defined by the Riemann–

Liouville fractional derivative µDγx, where

Dγx =
d

dt

t∫
0

x(τ)dτ
Γ(1− γ)(t− τ) γ

, (0 < γ ≤ 1),

(3)
and Γ(1−γ) is the Gamma–function, then (2) takes the
form

µ

m
= ω2τγ . (4)

For a one-degree-of-freedom system, whose damping
features are described by fractional derivative Kelvin-
Voigt model [Rossikhin and Shitikova, 1997a]

F = E(x+ τγDγx), (5)

where F is the force, formula (4) is obtained automati-
cally, since the equation of motion of such a system has
the form

ẍ+ ω2τγDγx+ ω2x = f, (6)



where f is the external force per unit mass. The analyt-
ical solution of equation (6) in the frequency domain

(
p2 + ω2(τp)γ + ω2

)
x̄ = f̄ , (7)

where p is the Laplace transform variable, with its in-
version to the time domain is described in detail in
[Rossikhin and Shitikova, 1997a].
If a system possesses an infinite number degrees-of-

freedom, then the introduction of the modal viscosity
and Rayleigh hypothesis allows one to obtain for each
mode the characteristic equation similar to that of equa-
tion (7), i.e., the behaviour of each mode is modeled in
terms of the behaviour of a mechanical oscillator, in so
doing the oscillators corresponding to different modes
are not depend on each other. Thus, the problem of
oscillations of a viscoelastic rod with fractional deriva-
tive constitutive equations has been reduced to an in-
finite set of single-mass oscillators in [Rossikhin and
Shitikova, 2004].
In the present paper, it will be shown that for rect-

angular plates, dynamic motion of which in a viscous
medium is described by two coupled and one uncou-
pled linear equations involving fractional derivatives,
that the behaviour of each mode of the coupled equa-
tions could be modeled already by the behaviour of a
two-mass system [Rossikhin and Shitikova, 2001], in
so doing the two-mass systems corresponding to dif-
ferent modes are separated from each other.

2 Governing Equations and the Method of Solu-
tion

Let us consider a rectangular isotropic plate, whose
dynamic behaviour is described by three linear equa-
tions [Volmir, 1972]

Eh

1− ν2

(
∂2u

∂x2
+

1− ν
2

∂2u

∂y2
+

1 + ν

2
∂2v

∂x∂y

)
= ρh

∂2u

∂t2
− q1,

(8)
Eh

1− ν2

(
∂2v

∂y2
+

1− ν
2

∂2v

∂x2
+

1 + ν

2
∂2u

∂x∂y

)
= ρh

∂2v

∂t2
− q2,

D∇4w = −ρh ∂
2w

∂t2
+ q3, (9)

where u(x, y, t), v(x, y, t), and w(x, y, t) are displace-
ments of the points of the plate’s median surface in
three mutually orthogonal directions x, y, z, two of
which, x and y, lie in the plate surface, and the third
one, z, is out of the plate plane; q1, q2, and q3 are the

intensities of the given external loads applied in the x−,
y−, and z−directions, respectively, ρ is the density, ν
is Poisson’s ratio, h is the plate thickness,

D =
Eh3

12(1− ν2)
, ∇4 = ∇2∇2

=
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
.

Equations (8) and (9) are subjected to the initial con-
ditions

u|t=0 = u̇|t=0 = 0, v|t=0 = v̇|t=0 = 0,
(10)

w|t=0 = ẇ|t=0 = 0,

and the boundary conditions (of Navier type) for the
simply supported edges free in the x−direction

w
∣∣∣
x=0

= w
∣∣∣
x=a

= 0, v
∣∣∣
x=0

= v
∣∣∣
x=a

= 0,

(11)
∂u

∂x

∣∣∣
x=0

=
∂u

∂x

∣∣∣
x=a

= 0,
∂2w

∂x2

∣∣∣
x=0

=
∂2w

∂x2

∣∣∣
x=a

= 0,

and for the simply supported edges free in the
y−direction

w
∣∣∣
y=0

= w
∣∣∣
y=b

= 0, u
∣∣∣
y=0

= u
∣∣∣
y=b

= 0,

(12)
∂v

∂y

∣∣∣
y=0

=
∂v

∂y

∣∣∣
y=b

= 0,
∂2w

∂y2

∣∣∣
y=0

=
∂2w

∂y2

∣∣∣
y=b

= 0,

where a and b are the plate’s dimensions along the x−
and y−axes, respectively.
Let us introduce the dimensionless values

u∗ =
u

a
, v∗ =

v

a
, w∗ =

w

a
,

x∗ =
x

a
, y∗ =

y

b
, t∗ =

t

a

√
E

ρ(1− ν2)
,

q∗i =
qi(1− ν2)
Eβ2

(i = 1, 2, 3), (13)

and rewrite the equations of motion (8) and (9) in the
dimensionless form omitting asterisks near the dimen-
sionless values

uxx +
1− ν

2
β2

1uyy +
1 + ν

2
β1vxy = ü− q1,

(14)

β1vyy +
1− ν

2
vxx +

1 + ν

2
β1uxy = v̈ − q2,

β2
2

12
(
wxxxx + 2β2

1wxxyy + β4
1wyyyy

)
= −ẅ + q3, (15)



as well as the boundary equations (11) for the simply
supported edges free in the x−direction

w
∣∣∣
x=0

= w
∣∣∣
x=1

= 0, v
∣∣∣
x=0

= v
∣∣∣
x=1

= 0,

(16)

ux

∣∣∣
x=0

= ux

∣∣∣
x=1

= 0, wxx

∣∣∣
x=0

= wxx

∣∣∣
x=1

= 0,

and the boundary conditions (12) for the simply sup-
ported edges free in the y−direction

w
∣∣∣
y=0

= w
∣∣∣
y=1

= 0, u
∣∣∣
y=0

= u
∣∣∣
y=1

= 0,

(17)

vy

∣∣∣
y=0
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∣∣∣
y=1

= 0, wyy

∣∣∣
y=0

= wyy

∣∣∣
y=1

= 0,

where β1 = a/b and β2 = h/a are the parameters
depending on the plate’s dimensions, the lower indices
x and y denote differentiation with respect to the cor-
responding coordinate, and overdots refer to the time-
derivative.
Represent the functions of the dimensionless displace-

ments in terms of the following expansions:

u(x, y, t) =
∞∑
m=1

∞∑
n=1

x1 mn(t)η1 mn(x, y),

v(x, y, t) =
∞∑
m=1

∞∑
n=1

x2 mn(t)η2 mn(x, y), (18)

w(x, y, t) =
∞∑
m=1

∞∑
n=1

x3 mn(t)η3 mn(x, y),

where the eigenfunctions have the form

η1 mn(x, y) = cosπmx sinπny,

η2 mn(x, y) = sinπmx cosπny, (19)

η3 mn(x, y) = sinπmx sinπny,

andm and n are integers, and x1 mn, x2 mn, and x3 mn

are the generalized displacements.
For solving the problem, let us apply the Laplace

transform method. The displacements of the points ly-
ing in the median surface (18) in the Laplace domain
have the form

ū(x, y, p) =
∞∑
m=1

∞∑
n=1

x̄1 mn(p)η1 mn(x, y),

v̄(x, y, p) =
∞∑
m=1

∞∑
n=1

x̄2 mn(p)η2 mn(x, y), (20)

w̄(x, y, p) =
∞∑
m=1

∞∑
n=1

x̄3 mn(p)η3 mn(x, y),

where p is the Laplace variable, and an overbar denotes
the Laplace transform.
Rewrite Eqs. (14) and (15) in the Laplace domain,

substitute formulae (20) in the net equations and con-
sider that

q̄i(x, y, p) =
∞∑
m=1

∞∑
n=1

q̄i mn(p)ηi mn(x, y)

(i = 1, 2, 3). (21)

Using condition of orthogonality of eigenfunctions
within the domain of x and y, as a result we obtain

(p2 + P1 mn)x̄1 mn + P2 mnx̄2 mn = q̄1 mn,

(22)
P2 mnx̄1 mn + (p2 + P3 mn)x̄2 mn = q̄2 mn,

(p2 + P4 mn)x̄3 mn = q̄3 mn, (23)

where

P1 mn = π2

(
m2 +

1− ν
2

β2
1n

2

)
P2 mn = π2 1 + ν

2
β1mn

P3 mn = π2

(
1− ν

2
m2 + β2

1n
2

)
P4 mn = π4 β

2
2

12
(
m2 + β2

1n
2
)2

The characteristic equation for the set of Eqs. (22) is
written in the form

f0
mn(p) = p4 + (P1 mn + P3 mn)p2

+P1 mnP3 mn − P 2
2 mn = 0 (24)

and possesses two roots

p2
1 mn = −π2(m2 + β2

1n
2),

p2
2 mn = −π2 1− ν

2
(m2 + β2

1n
2), (25)

which correspond to the natural frequencies

ω1 mn = π
√
m2 + β2

1n
2,

ω2 mn = π

√
1− ν

2
(m2 + β2

1n
2) (26)

of the in-plane horizontal vibrations of the plate, in so
doing ω2

2 mn
2

1−ν = ω2
1 mn = ω2

mn.
The natural frequency of the out-of-plane vertical vi-

brations

Ωmn =
π2β2

2
√

3

(
m2 + β2

1n
2
)

=
β2

2
√

3
ω2
mn (27)



corresponds to the root of the characteristic equation
for Eq. (23).
Let us introduce the modal viscosity µ in Eqs. (22)

by formula µ = ω2
mnτ

γ
mnp

γ , but in Eq. (23) by for-
mula µ = Ω2

mnτ
γ
3 mnp

γ , where τmn and τ3 mn are the
retardation times of the mnth mode of the in-plane and
out-of-plane vibrations, respectively.
As a result we obtain

(p2 + ω2
mnτ

γ
mnp

γ + P1 mn)x̄1 mn

+P2 mnx̄2 mn = q̄1 mn,

P2 mnx̄1 mn + (p2 + ω2
mnτ

γ
mnp

γ

+P3 mn)x̄2 mn = q̄2 mn, (28)

(p2 + Ω2
mnτ

γ
3 mnp

γ + P4 mn)x̄3 mn = q̄3 mn. (29)

3 Analysis of the Characteristic Equations
The characteristic equation for the set of Eqs. (28) has

the form

fmn(p) = p4 + 2ω2
mnτ

γ
mnp

2+γ + ω4
mnτ

2γ
mnp

2γ

+(p2 + ω2
mnτ

γ
mnp

γ)(P1 mn + P3 mn)

+P1 mnP3 mn − P 2
2 mn = 0, (30)

but the characteristic equation for Eq. (29) is written in
the form

f3mn(p) = p2 + Ω2
mnτ

γ
3mnp

γ + Ω2
mn = 0. (31)

Considering that

P1 mn + P3 mn = ω2
1 mn + ω2

2 mn =
3− ν

2
ω2
mn,

P1 mnP3 mn − P 2
2 mn =

1− ν
2

ω4
mn, (32)

rewrite Eq. (30) in the following form

fmn(p) = p4 + 2ω2
mnτ

γ
mnp

2+γ + ω4
mnτ

2γ
mnp

2γ

+(p2 + ω2
mnτ

γ
mnp

γ)aω2
mn + bω4

mn = 0, (33)

where

a =
3− ν

2
, b =

1− ν
2

, b = a− 1.

Let us change the variables in the characteristic equa-
tion (33) using the formulas

p = p∗ωmn, τmn = τ∗ω−1
mn. (34)

As a result we obtain the basic equation

f∗(p∗) = p∗4 + 2τ∗ γp∗ 2+γ + τ∗ 2γp∗ 2γ

+a
(
p∗ 2 + τ∗γp∗γ

)
+ b = 0. (35)

Equation (35) can be represented in the form

f∗(p∗) = (p∗ 2+τ∗ γp∗ γ+1)(p∗ 2+τ∗ γp∗ γ+b) = 0.
(36)

Equating to zero each expression in parenthesis of
(36) yields

p∗ 2 + τ∗ γp∗ γ + 1 = 0, (37)
p∗ 2 + τ∗ γp∗ γ + b = 0, (38)

whence at τ∗ it follows that

p10 = ±i, p20 = ±i
√
b. (39)

Putting in Eqs. (37) and (38) p∗ = r∗eiψ
∗

and sepa-
rating the real and imaginary parts, respectively, yields

r∗2R−1 cos(2ψ∗ − Φ) + 1 = 0,
r∗2R−1 sin(2ψ∗ − Φ) = 0, (40)

r∗2R−1
1 cos(2ψ∗ − Φ1) + 1 = 0,

r∗2R−1
1 sin(2ψ∗ − Φ1) = 0, (41)

where

R =
√

1 + 2x cos γψ∗ + x2,

R1 =
√
b2 + 2bx cos γψ∗ + x2,

tanΦ =
x sin γψ∗

1 + x cos γψ∗
,

tanΦ1 =
x sin γψ∗

b+ x cos γψ∗
, x = (r∗τ∗)γ .

From Eqs. (40) and (41) we obtain, respectively,

2ψ∗ − Φ = ±π, r∗2R−1 = 1, (42)
2ψ∗ − Φ1 = ±π, r∗2R−1

1 = 1. (43)

Tending x to∞ in (42) and (43), respectively, yields

ψ∗1∞ = ± π

2− γ
, r1∞ = ∞, (44)

ψ∗2∞ = ± π

2− γ
, r2∞ = ∞. (45)

Behaviour of the roots of Eqs. (37) and (38) as
the function of the parameter τ∗ is well understood
[Rossikhin and Shitikova, 1997b], and therefore the in-
vestigation of the roots of the characteristic Eq. (36) is
not a particular problem.
The behaviour of the roots (indicated by figures 1 and

2, respectively) in the complex plane as function of the



Figure 1. Behaviour of the complex conjugate roots of the basic
Eqs. (35) and (48).

parameter τ∗ is presented in Fig. 1, where the magni-
tudes of the value γ are indicated near the correspond-
ing curves, and only the upper part of the complex half-
plane is shown. Reference to Fig. 1 shows that two
curves for the τ∗-dependence of the roots p1,2 issue out
of two different points defined by Eq. (39) and, as τ∗

tends to∞, come close to one and the same asymptote
leaving the origin of the coordinates under the angle
ψ = ±π/(2− γ) (see Eqs. (44) and (45)).
Note that the roots of a two-mass oscillator behave

similarly to those of the basic Eq. (36) [Rossikhin and
Shitikova, 2001].
Having determined the roots of the basic Eq. (35), all

roots of the characteristic Eq. (33) could be found by
the formulas

pmn = ωmnr
∗e±iψ

∗
, τmn = ω−1

mnτ
∗. (46)

Reference to Eqs. (46) shows that the roots of the
characteristic Eq. (33) for each fixed magnitude of τ∗

locate on two straight lines issuing from two points of
the basic lines under the angles ±ψ∗α (α = 1, 2) at
the distances rα mn = r∗αωmn, in so doing the magni-
tudes of τmn corresponding to these roots decrease by
the law τmn = τ∗ω−1

mn (Fig. 2).
Now let us change the variables in the characteristic

equation (31) using the formulas

p = p∗3Ωmn, τ3 mn = τ∗3 Ω−1
mn. (47)

As a result we obtain the basic equation

p∗3
2 + (p∗3τ

∗
3 )γ + 1 = 0, (48)

which coincides with Eq. (37).

Figure 2. Behaviour of the roots of the characteristic Eqs. (30) and
(31).

With the variation of τ∗3 from 0 to ∞ the roots of the
basic Eq. (48) on the complex plane p are depicted by
the basic curves which are indicated by figure 3 in Fig.
1.
Having determined the roots of basic Eq. (48), one can

find all roots of characteristic Eq. (31) by the formulas

pmn = Ωmnr∗3e
±iψ∗3 , τ3 mn = Ω−1

mnτ
∗
3 . (49)

Reference to Eq. (49) shows that all roots of the char-
acteristic Eq. (31) locate on the complex plane on one
straight line intersecting the origin and a certain initial
point p∗ (Fig. 2) which is determined from the basic
Eq. (48) at the initial retardation time τ∗3 . The ini-
tial retardation time, in its turn, is defined by the initial
temperature of the plate by Arrhenius formula

τ∗3 = const exp(−V R−1T−1), (50)

where T is the absolute temperature, R is the gas con-
stant, and V is the energy of activation.
With the variation in the plate’s initial temperature

and, hence, the initial point p∗, the location of this line
on the plane p changes.
The magnitudes of the roots for the characteristic Eqs.

(31) and (33) are presented in Table 1 at the following
magnitudes of the parameters: γ = 0.8, β1 = 1, β2 =
0.05, 1 ≤ m,n ≤ 6 for the initial retardation times
τ∗ = 1 and τ∗3 = 1, what corresponds to the basic
roots p∗1,3 = −0.5314± 1.1097i and p∗2 = −0.6467±
0.7326i. For specificity, the roots given in Table 1 are
depicted in Fig. 2 by crosses and light circles for Eqs.
(33) and (31), respectively. The basic roots are marked
by the dark circles.



Table 1. The magnitudes of the roots for the characteristic Eqs. (31)
and (33)

m,n ωmn Ωmn τmn τ3
mn r(1)mn r(2)mn r(3)mn

1,1 4.443 0.285 0.225 3.510 5.466 4.342 0.351

1,2 7.025 0.712 0.142 1.404 8.643 6.865 0.876

2,2 8.886 1.139 0.112 0.877 10.933 8.684 1.402

1,3 9.935 1.425 0.100 0.702 12.223 9.708 1.723

2,3 11.327 1.852 0.088 0.540 13.937 11.070 2.279

1,4 12.167 2.137 0.082 0.467 14.97 11.89 2.629

3,3 13.329 2.564 0.075 0.390 16.400 13.025 1.402

2,4 14.049 2.849 0.071 0.351 17.286 13.73 3.506

3,4 15.708 3.561 0.064 0.281 19.327 15.350 4.382

1,5 16.019 3.704 0.062 0.270 19.709 15.654 4.557

2,5 16.978 4.131 0.059 0.242 20.816 16.533 5.083

4,4 17.772 4.559 0.056 0.219 21.866 17.367 5.609

3,5 18.318 4.844 0.055 0.207 22.539 17.901 5.959

1,6 19.109 5.271 0.052 0.189 23.512 18.674 6.485

2,6 19.869 5.698 0.050 0.176 24.447 19.417 7.011

4,5 20.116 5.841 0.049 0.171 24.750 19.658 7.186

3,6 21.074 6.411 0.047 0.156 25.929 20.595 7.887

5,5 22.214 7.123 0.045 0.140 27.330 21.709 8.764

4,6 22.654 7.408 0.044 0.135 27.873 22.139 9.114

5,6 24.540 8.690 0.041 0.115 30.189 23.978 10.692

6,6 26.657 10.257 0.037 0.098 32.800 26.050 12.620

4 Construction of the Solution
From Eqs.(28) and (29) we can find

x̄1 mn =
[
q̄1 mn(p2 + ω2

mnτ
γ
mnp

γ + P3 mn)

−q̄2 mnP2 mn] f−1
mn(p),

x̄2 mn =
[
q̄2 mn(p2 + ω2

mnτ
γ
mnp

γ + P1 mn)

−q̄1 mnP2 mn] f−1
mn(p), (51)

x̄3 mn = q̄3 mnf
−1
3mn(p), (52)

where fmn(p) and f3mn(p) are defined by (30) and
(31), respectively.
From Eqs. (51) and (52) it is seen that the functions
x̄i mn (i = 1, 2, 3) on the complex plane p are mul-
tivalued functions with the branch points p = 0 and
p = −∞ and possess the poles at the magnitudes
p = pk which vanish the denominators of (51) and
(52), i.e., they are the roots of the characteristic equa-
tions (30) and (31).
For multivalued functions possessing the branch

points, the Mellin-Fourier inversion formula

xi mn(t) =
1

2πi

c+i∞∫
c−i∞

x̄i mn(p)eptdp (i = 1, 2, 3)

(53)

Figure 3. Contour used to calculate the complex inversion integral
in the Laplace method.

is valid only for the first sheet of the Riemannian sur-
face, i.e., when −π < arg p < π. Thus, the integration
contour should be chosen in the form presented in Fig.
3.
According to Jordan lemma, curvilinear integrals

taken along the arcs cR tend to zero when R → ∞,
and the integral calculated along cρ also tends to zero
as ρ→ 0.
Using the main theorem of the theory of residues, the

solution of Eqs. (53) could be written in the form

xi mn(t) = xdrift
i mn(t) + xvibr

i mn(t), (i = 1, 2, 3) (54)

xdrift
i mn(t) =

1
2πi

∞∫
0

[
x̄i mn(se−iπ)

−x̄i mn(seiπ)
]
e−stds, (55)

xvibr
i mn(t) =

∑
k

res
[
x̄i mn(pk)epkt

]
, (56)

where summation is carried out over all isolated singu-
lar points (poles).
In other words, the solution (54) is obtained in the

form of the sum of two terms, where the first one (55)
governs the drift of the system’s equilibrium position
and is defined by the quasi–static processes of creep oc-
curring in the system, and the other term (56) describes
damped vibrations around the equilibrium position and
is determined by the systems’s inertia and energy dissi-
pation.
In order to obtain the solution in an explicit form, let

us put in Eqs. (51) and (52) q̄1 mn(p) = 1 (i = 1, 2, 3)
for allm and n. Such an assumption corresponds to the
input signal in a form of Dirac pulse.
Knowing the roots of the characteristic Eqs. (30) and

(31), and substituting Eqs.(51) and (52) in (54)-(56)



yields

x1 mn =
2∑

α=1

d
(α)
1 mne

−δ(α)
mnt sin(ω(α)

mnt− ϕ
(α)
1 mn)

+
1
π

∞∫
0

χ1 mn(s)e−stds, (57)

x2 mn =
2∑

α=1

d
(α)
2 mne

−δ(α)
mnt sin(ω(α)

mnt− ϕ
(α)
2 mn)

+
1
π

∞∫
0

χ2 mn(s)e−stds, (58)

x3 mn = d3 mne
−δ(3)mnt sin(ω(3)

mnt− ϕ3 mn)

+
1
π

∞∫
0

χ3 mn(s)e−stds, (59)

where for i = 1, 2 and α = 1, 2

d
(α)
i mn =

2(
H

(α)
mn

)2

+
(
Q

(α)
mn

)2

×
r“

q
(α)
mnH

(α)
mn − h

(α)
i mnQ

(α)
mn

”2

+
“
h

(α)
i mnH

(α)
mn + q

(α)
mnQ

(α)
mn

”2

,

tan ϕ
(α)
i mn =

h
(α)
i mnH

(α)
mn + q

(α)
mnQ

(α)
mn

q
(α)
mnH

(α)
mn − h

(α)
i mnQ

(α)
mn

pα = r(α)
mne

±iψ(α)
mn = − δ(α)

mn ± iω(α)
mn,

H(α)
mn = <f ′mn(pα) = 4r(α)

mn

3
cos 3ψ(α)

mn

+2aω2
mnr

(α)
mn cosψ(α)

mn

+2(2 + γ)ω2
mnτ

γ
mnr

(α)
mn

1+γ
cos[(1 + γ)ψ(α)

mn]

+aω4
mnτ

γ
mnγr

(α)
mn

γ−1
cos[(γ − 1)ψ(α)

mn]

+ω4
mnτ

2γ
mn2γr

(α)
mn

2γ−1
cos[(2γ − 1)ψ(α)

mn],

Q(α)
mn = =f ′mn(pα) = 4r(α)

mn

3
sin 3ψ(α)

mn

+2aω2
mnr

(α)
mn sinψ(α)

mn

+2(2 + γ)ω2
mnτ

γ
mnr

(α)
mn

1+γ
sin[(1 + γ)ψ(α)

mn]

+aω4
mnτ

γ
mnγr

(α)
mn

γ−1
sin[(γ − 1)ψ(α)

mn]

+ω4
mnτ

2γ
mn2γr

(α)
mn

2γ−1
sin[(2γ − 1)ψ(α)

mn],

q(α)
mn = r(α)

mn

2
sin 2ψ(α)

mn + ωmnτ
γ
mnr

(α)
mn

γ
sin(γψ(α)

mn),

h
(α)
1 mn = r(α)

mn

2
cos 2ψ(α)

mn + ωmnτ
γ
mnr

(α)
mn

γ
cos(γψ(α)

mn)
+P3 mn − P2 mn,

h
(α)
2 mn = r(α)

mn

2
cos 2ψ(α)

mn + ωmnτ
γ
mnr

(α)
mn

γ
cos(γψ(α)

mn)
+P1 mn − P2 mn,

χi mn(s) =
Bmn(s)ai mn(s)−Amn(s)bmn(s)

[Amn(s)]
2 + [Bmn(s)]

2 ,

a1 mn(s) = s2+ωmnτγmns
γ cos(γπ)+P3 mn−P2 mn,

a2 mn(s) = s2+ωmnτγmns
γ cos(γπ)+P1 mn−P2 mn,

bmn(s) = ωmnτ
γ
mns

γ sin(γπ),

Amn(s) = s4 + aω2
mns

2

+2ω2
mnτ

γ
mns

2+γ cos(2 + γ)π

+aω4
mnτ

γ
mns

γ cos γπ

+ω4
mnτ

2γ
mns

2γ cos 2γπ + bω4
mn,

Bmn(s) = 2ω2
mnτ

γ
mns

2+γ sin(2 + γ)π

+aω4
mnτ

γ
mns

γ sin γπ

+ω4
mnτ

2γ
mns

2γ sin 2γπ,

d3 mn =
2√

H2
3 mn +Q2

3 mn

,

tanϕ3 mn = − H3 mn

Q3 mn
,

H3 mn = <f ′3 mn(p3) = 2r(3)mn cosψ(3)
mn

+γΩ2
mnτ

γ
3 mnr

(3)
mn

γ−1
cos[(γ − 1)ψ(3)

mn],

Q3 mn = =f ′3 mn(p3) = 2r(3)mn sinψ(3)
mn



Figure 4. The time dependence of the functions (a) udrift, and (b)
u(t).

+γΩ2
mnτ

γ
3 mnr

(3)
mn

γ−1
sin[(γ − 1)ψ(3)

mn],

p3 = r(3)mne
±iψ(3)

mn = − δ(3)mn ± iω(3)
mn,

χ3 mn(s) =
B3 mn(s)

[A3 mn(s)]2 + [B3 mn(s)]2
,

B3 mn(s) = Ω2
mnτ

γ
3 mns

γ sin γπ,

A3 mn(s) = s2 + Ω2
mn + Ω2

mnτ
γ
3 mns

γ cos γπ.

Substituting the generalized displacements xi mn (i =
1, 2, 3) defined by Eqs. (57)-(59) into relationships
(18), we could obtain the desired displacements u, v
and w of the viscoelastic plate under consideration.
The drifts of the equilibrium position udrift(t),
vdrift(t), and wdrift(t), and the displacements u(t),
v(t), and w(t) are presented in Figs. (4)-(6), respec-
tively, for the plate point x = 1/2, y = 1/2 with due
account for 15 terms in the series (18). From Figs. (4a)-
(6a) it is evident that in the case of the input signal in a
form of Dirac pulse the drifts of the equilibrium posi-
tion quickly decay with time, therefore, their influence
on damped vibrations may be ignored when calculating
the displacements.

Figure 5. The time dependence of the functions (a) vdrift, and (b)
v(t).

Figure 6. The time dependence of the functions (a)wdrift, and (b)
w(t).

5 Conclusion
An original method for solving the problem on tran-

sient vibrations of linear viscoelastic plates, whose vis-
coelastic features are described by fractional deriva-
tives, has been presented in this article. It is based
on the assumption that each mode of vibrations has its
own damping coefficient and its own retardation time.
This assumption considerably simplifies the solution of
the problem under consideration, since all roots of the
characteristic equations locate on two straight lines in-
tersecting the origin of the coordinates and two basic



points. The location of the basic points on the complex
plane depends on the temperature of the plate and on
the order of the fractional derivative.
The Laplace integral transform method has been em-

ployed as a method of solution, with further expansion
of the desired functions in series with respect to eigen-
functions of the problem. However, unlike in the tradi-
tional approach, when rationalization of a characteris-
tic equation with fractional powers is carried out during
the transition from image to pre–image, here the non-
rationalized characteristic equation has been solved by
the method suggested by the authors. As a result of
such an approach, the solution has been obtained in the
form of the sum of two terms, one of which governs the
drift of the system’s equilibrium position and is defined
by the quasi–static processes of creep occurring in the
system, and the other term describes damped vibrations
around the equilibrium position and is determined by
the systems’s inertia and energy dissipation.

Acknowledgements
The research described in this publication has been

made possible in part by the joint Grant from the Rus-
sian Foundation for Basic Research No.07-01-92002-
HHC-a and the National Science Council of Taiwan
No.96WFA2500005.

References
Abdel–Ghaffar, A. M. and Housner, G. W. (1978) Am-

bient vibration tests of suspension bridge. J. Engrg.
Mech. Div. ASCE, 104, pp. 983–999.

Abdel–Ghaffar, A. M. and Scanlan, R. H. (1985) Am-
bient vibration studies of Golden Gate Bridge. I:
Suspended structure. J. Engrg. Mech. ASCE, 111,
pp. 463–482.

Clough, R. W. and Penzien, J. (1975). Dynamics of
Structures. McGraw-Hill. New York.

Rossikhin, Yu. A. and Shitikova, M. V. (1997a) Appli-
cation of fractional calculus to dynamic problems of
linear and nonlinear hereditary mechanics of solids.
Applied Mechanics Reviews, 50(1), pp. 15–67.

Rossikhin, Yu. A. and Shitikova, M. V. (1997b) Ap-
plication of fractional derivatives to the analysis of
damped vibrations of viscoelastic single mass sys-
tems. Acta Mechanica, 120, pp. 109–125.

Rossikhin, Yu. A. and Shitikova, M. V. (2001b) A
new method for solving dynamic problems of frac-
tional derivative viscoelasticity. Int. J. Engng Sci., 39,
pp. 149–176.

Rossikhin, Yu. A. and Shitikova, M. V. (2004) Analy-
sis of viscoelastic rod dynamics via models involving
fractional derivatives or operators of two different or-
ders, Shock Vibr. Digest 36(1), pp. 3–26.

Volmir, A. S. (1972) Nonlinear Dynamics of Plates and
Shells (in Russian). Nauka. Moscow.


