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Abstract

We consider the approximation of the global Lorenz

attractor by algebraic and semialgebraic sets and dis-

cuss the existence of a Whitney stratification for such

sets. Analogous properties are investigated for the glo-

bal attractors of differential equations on Riemannian

manifolds.
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1 Introduction

In this paper we investigate some algebraic properties

of sets which approximates the global attractor of a dy-

namical system. In Sections 2 and 3 we shortly de-

scribe some estimates of the global Lorenz attractor and

introduce the concept of semialgebraic sets. Existence

and realization of stratifications for some algebraic and

analytic sets are discussed in Sections 4 and 5.

2 Algebraic approximation of the global Lorenz

attractor

Consider the Lorenz equation

ẋ = σ(y − x) ,

ẏ = rx − y − xz , (1)

ż = xy − bz ,

where σ > 0, r > 0 and b > 0 are positive pa-

rameters. Denote by {ϕt}t∈R the global flow of (1),
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i.e. for any u0 = (x0, y0, z0) ∈ R
3 the solution

u(t, u0) of (1) starting in u0 at t = 0 is given by

u(t, u0) = ϕt(u0), t ∈ R.
It is easy to show ([Boichenko, Leonov and Reitmann,

2005; Foias and Temam, 1988; Leonov, Bunin and

Koksch, 1987; Leonov and Reitmann, 1986]) that (1)

has a global B-attractor A, i.e. there exists a compact

set A ⊂ R
3 such that ϕt(A) = A, ∀ t ∈ R, and

distH(ϕt(B),A) → 0 for t → ∞, where distH(·, ·)
denotes the Hausdorff semi-distance and B ⊂ R

3 is an

arbitrary bounded set.

For certain positive parameters σ, r and b the attrac-

tor A is a fractal set ([Boichenko, Leonov and Reit-

mann, 2005; Leonov and Reitmann, 1986]), i.e. its

Hausdorff dimension is greater than its topological di-

mension. For example, if 1 < b ≤ 2, it is shown in

[Boichenko and Leonov, 1990] (see also [Boichenko,

Leonov and Reitmann, 2005]) that

dimH A ≤ 3 −
2(σ + b+ 1)

σ + 1 +
√

(σ − 1)2 + 4σr
. (2)

For the localization of A very often Lyapunov func-

tions, defined by quadratic forms, are used ([Foias and

Temam, 1988; Giacomini and Neukirch, 1997; Leonov

and Reitmann, 1986; Shiota, 1997]). A typical Lya-

punov function for (1) is given by ([Boichenko, Leonov

and Reitmann, 2005])

V (x, y, z) :=
1

2
[x2 + y2 + (z − σ − r)2] . (3)

It is easy to show ([Boichenko, Leonov and Reitmann,

2005]) that the global B-attractor of (1) is included in

the set

S := {(x, y, z) |σx2+y2+
b

2
(z−σ−r)2 ≤

b

2
(σ+r)2} ,

(4)

where λ = min{σ, 1, b
2}. It turns out that in this case

the approximation of the attractor is given by an alge-

braic or a semialgebraic set.



3 Semialgebraic and algebraic sets

Suppose that R[x1, . . . , xn] is the ring of polynomials

on R
n. A set S ⊂ R

n is called semialgebraic if there

exist polynomials φi, ψj ∈ R[x1, . . . , xn],
i = 1, 2, . . . , k, j = 1, 2, . . . , s such that

S = {x ∈ R
n |φi(x) = 0, i = 1, 2, . . . , k,

ψj(x) ≥ 0 , j = 1, 2, . . . , s} (5)

and algebraic if

S = {x ∈ R
n |φi(x) = 0, i = 1, 2, . . . , k} . (6)

Properties of semialgebraic sets ([Shiota, 1997])

(P1) S, T ⊂ R
n semialgebraic sets ⇒ S × T ,S ∩ T

and S\T semialgebraic sets.

(P2) S ⊂ R
n a semialgebraic set ⇒ dimtop(S̄\S) <

dimtop S if S 6= ∅ (dimtop(S) denotes the topo-

logical dimension of a set S ⊂ R
n).

(P3) S ⊂ R
n a semialgebraic and connected set ⇒ The

family of connected components of S is finite and

each connected component is semialgebraic.

Let r = 1, 2, . . . or ω and let Σr(S) denote the Cr

singular point set of S, i.e. the set of points where

the germ of S is either of topological dimension <
dimtop S or not Cr smooth. It is well-known that the

set Σr(S) is semialgebraic and of topological dimen-

sion < dimtop S ([Shiota, 1997]).

Example 1 Consider the Lorenz equation (1). It is

shown in [Boichenko, Leonov and Reitmann, 2005]

that the Lorenz attractor is contained in a semialgebraic

set (5) characterized for b ≤ 2σ by the polynomials

ψ1(x, y, z) = z − 1
2σ x

2 ,

ψ2(x, y, z) = −(y2 + (z − r)2 − ℓ2r2) ,

where ℓ =

{

1 , if b ≤ 2
b

2
√

b−1
, if b > 2 .























(7)

Note that in the special case b = 2σ the algebraic set

S1 = {(x, y, z) ∈ R
3 | z − 1

2σx
2 = 0} is invariant for

system (1).

Fig.1: The semialgebraic set (5) with polynomials (7)

([Malykh, 2009])

4 Stratification of semialgebraic sets

A stratification of a set S ⊂ R
n is a partition of S into

submanifolds {Si} of R
n such that the family {Si} is

locally finite at each point of S. If each stratum Si is

an analytic submanifold of R
n, we call the stratification

analytic.

A stratification {Si} of S is called a Whitney stratifi-

cation if each pair of strata Si and Sj , i 6= j, satisfy the

following Whitney condition: If {pk}∞k=1 and {qk}∞k=1

are sequences of points in Si and Sj , respectively, both

converging to a point p of Si, if the sequence of the

tangent spaces {Tqk
Sj}∞k=1 converges to a subspace

L ⊂ R
n in Gn,m, where m = dimSj , and if the se-

quence {−−→pkqk}∞k=1 of lines containing 0 and qk − pk

converges to a line l ⊂ R
n in Gn,1, then l ⊂ L.

If this is the case for a given point p ∈ Si and for any

sequences of points {pk}∞k=1 and {qk}∞k=1, we say that

Si and Sj satisfy the Whitney condition at p.

Recall that Gn,k(n, k ∈ N, k ≤ n) is the family of

all k-dimensional subspaces of R
n. It is well-known

that Gn,k has the structure of a real analytic manifold

of dimension n(n − k) which is called Grassmann

manifold. In addition to this we assume the following

condition:

If Si ∩ Sj 6= ∅ , then Si ⊂ Sj (boundary condition) .

A theorem by Whitney ([Whitney, 1934]) states that

under rather general conditions such a stratification

exists. For the description of algebraic sets and their

singular points we use some representation which is

based on ideals of polynomials. A well-known theorem

by Hilbert ([Gatermann, 2000]) states that any such

ideal of polynomials on R
n is finitely generated. It

follows that an algebraic set can be written as S =
Vn(J ) = {x ∈ R

n|φi(x) = 0, i = 1, 2, . . . , k} =:
Vn(φ1, . . . , φk).At each point x of Vn(J ) we consider

the k × n matrix ( ∂φi

∂xj
). Assume that κ is the maxi-

mal rank of this matrix on Vn(J ). A point x ∈ Vn(J )
is regular if the rank of the matrix ( ∂φi

∂xj
) at this point

is κ. In other case the point is singular. In [Malykh,

2009] we have determined the sets of singular points

and their topological dimension of some approxima-

ting algebraic and semialgebraic sets of the global B-

attractor of the Lorenz system (1). From the general

theory ([Milner, 1968]) it follows that the set of regular

points of an algebraic set is an analytic manifold of di-

mension 3−κ over R. The set of singular points has the

structure of an algebraic set. In particular, for this set

exists a Whitney stratification. In [Foias and Temam,

1988; Foias and Temam, 1994] Foias and Temam have

introduced algebraic and analytic sets that can appro-

ximate the global B-attractor of (1) at an arbitrary high

level of accuracy. It is shown in [Foias and Temam,

1988; Foias and Temam, 1994] that algebraic and ana-

lytic sets as approximation of possibly fractal sets

exist under much wider conditions than inertial mani-

folds which are always smooth manifolds.



Example 2 Suppose

S = V2(x1(x1 − x2
2))

= {(x1, x2) ∈ R
2 |x1(x1 − x2

2) = 0}

= {x1 = 0} ∪ {x1 = x2
2} (8)

is an algebraic set (see also [Medved, 1992]).

Let us write S in the form S =
5
⋃

i=1

Si, where

S1 = {(0, x2) ∈ R
2 |x2 > 0} ,

S2 = {(0, x2) ∈ R
2 |x2 < 0} ,

S3 = {(x1, x2) ∈ R
2 |x2 = x

1/2
1 , x1 > 0} ,

S4 = {(x1, x2) ∈ R
2 |x2 = −(x1)

1/2, x1 > 0} ,

S5 = {(0, 0)} .

S S

S

S S

Fig.2: Whitney stratification of the set (8)

([Malykh, 2009])

It is clear that the sets {Si} are disjunct and the fol-

lowing properties are true:

S1 = S1 ∪ S5 , S2 = S2 ∪ S5 , S3 = S3 ∪ S5 ,
S4 = S4 ∪ S5 , S5 = S5 .

All pairs (Si,Sj) (i 6= j) satisfy the Whitney condi-

tion. Let us show this for the pair (S5,S1). Since S5 ⊂
S1 we have to prove that (S5,S1) satisfies the Whit-

ney condition. Suppose that qk ∈ S1, k = 1, 2, . . . ,
is an arbitrary sequence of points. We can assume that

qk = (0, q′k) 6= (0, 0). Let pk = (0, 0), k = 1, 2, . . . .
Thus we have

{(−−→pkqk)} = {(0, x2) ∈ R
2 |x2 ∈ R} =: l .

Furthermore it is easy to see that Tqk
S1 =: L and l ⊂

L. The boundary condition is also satisfied. Consider,

for example, S5 ∩ S3 6= ∅. Clearly, that S5 ⊂ S3.

5 Analytic approximation of global attractors on

manifolds

In this part we discuss some properties of analytic ap-

proximating sets for global B-attractors of differential

equations on Riemannian manifolds. One reason for

this is that many systems from synchronization theory

([Leonov, Reitmann and Smirnova, 1992]) have such

global compact B-attractors on a cylinder, which is a

special type of a smooth manifold.

Let us consider on the n-dimensional analytic mani-

fold (M, g) the vector field

u̇ = F (u) , (9)

where F : M → TM is analytic. We assume that M
is countable at infinity, i.e. M is the union of at most

a countable family of compact manifolds. This pro-

perty is necessary if we want to use on the noncompact

manifold M a partition of unity. Note that “almost all”

natural n-dimensional manifolds such as R
n are count-

able at infinity.

Assume that for each p ∈ M the maximal integral

curve u(·, p) of (9) satisfying u(·, p) = p exists on R.

Define ϕ(·)(p) := u(·, p) and denote by ρ the metric

generated by the metric tensor g. Suppose also that

there exists a scalar valued functionV : M → R which

is at least C1. In order to get the existence of a global

B-attractor for (9) we use the B-dissipativity property

of system (9). Recall ([Boichenko, Leonov and Reit-

mann, 2005]) that (9) is called B-dissipative if there

exists a bounded set D ⊂ M that attracts under (9)

all bounded sets B from M. The following theorem

is a slight modification of a result from [Boichenko,

Leonov and Reitmann, 2005].

Theorem 1. Suppose that there exists a Lyapunov

function V for (9) such that the following conditions

are satisfied:

1. V is proper for M, i.e. for any compact set

K ⊂ R the set V −1(K) ⊂ M is compact and

V is bounded from below on M ;

2. There exists an r > 0 such that the derivative of V
with respect to (9) satisfies the inequality

V̇ (p) := (F (p), gradV (p)) ≤ 0 for p ∈ Br(0) ;

3. The dynamical system (9) does not have a motion

ϕ(·)(q) with ϕt(q) /∈ Br(0) and V̇ (ϕt(q)) ≡ 0
for t ≥ t0 .

Then the dynamical system ({ϕt}t∈R,M, ρ) is

B-dissipative.

From the general theory of attractors it follows that

if system (9) is B-dissipative then there exists a global

B-attractor for (9).

Let us introduce analytic functions on our manifold

M. Assume for this that x : D(x) → R(x) is an

analytic chart on M and Ox(p) is a ring of real-valued

analytic functions near x(p). Then the ring of ana-

lytic functions near p on M can be defined with the

help of the pull-back map x∗ by R := (x∗)(Ox(p)).
A semianalytic subset of an analytic manifold M is

a set S ⊂ M with the property that if p is an ar-

bitrary point of M then there exists a neighborhood

U of p and a finite collection F of real-valued ana-

lytic functions on U , such that S ∩ U belongs to the



Boolean algebra of subsets M generated by the sets

{p ∈ U |φ(p) = 0}, {p ∈ U |φ(p) > 0} for all φ ∈ F .
Now we introduce the concept of a Whitney stratifica-

tion on an analytic manifold. We follow here in some

details the presentation in [Gauthier and Kupka, 2000].

Suppose that P and Q are smooth submanifolds of

M, dimQ = m.

The pair (P ,Q) satisfies condition (b) of Whitney at

the point p ∈ P ∩Q if there exists a chart x : D(x) →
R(x) of the manifold M near p with the following

properties:

Suppose {pk} and {qk} are sequences of points on M
such that

1. pk ∈ D(x) ∩ P , qk ∈ D(x) ∩Q,
pk 6= qk, pk → p, qk → p as k → ∞ ;

2. {(
−−−−−−−−→
x(pk), x(qk))}, i.e. the 1-dimensional linear

subspace containing the points 0 and x(qk) −
x(pk), converges to an 1-dimensional subspace l ;

3. The vector spaces dx(Tqk
Q) (here dx denotes the

differential of x and Tqk
Q is the tangent space at

qk) converge in the topology of the Grassmannian

Gr (m,n) to the linear subspace L ⊂ R
m.

Then l ⊂ L.

The pair (P ,Q) satisfies the condition (b) of Whitney if

P ⊂ Q and (P ,Q) satisfies condition (b) of Whitney

at any point p ∈ P ∩Q.
It is easy to see that the stratification introduced in part

4 is the realization of the above definition for M = R
n.

As an example of a dynamical system on a manifold

we have considered in [Malykh, 2009] the equation of

the mathematical pendulum given by

ẍ+ αẋ+ sinx = 0 , (10)

whereα > 0 is a parameter. This equation is equivalent

to the system

ẋ = y, ẏ = −αy − sinx . (11)

Since the right-hand side of (11) is globally Lips-

chitz we have the global existence and uniqueness of

all solutions. The dynamical system {ϕt}t∈R, gen-

erated by (11), can be considered on the flat cylin-

der R
2/Γ, where Γ = {ke1, k ∈ Z} is the dis-

crete subgroup of R
2, generated by the element e1 =

(2π, 0) of the canonical basis of R
2. It is easy to show

([Boichenko, Leonov and Reitmann, 2005]) that the

global B-attractor of (11) is quasiregular, i.e. it is the

union of the set of equilibria and the associated unsta-

ble manifolds to these equilibria. For the approxima-

tion of this attractor analytic Lyapunov function of the

type V (x, y) = y2

2 +(1− cosx), (x, y) ∈ R
2, are used

in [Malykh, 2009]. It is evident that such Lyapunov

functions define certain classes of analytic or semiana-

lytic sets ont the cylinder.
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