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Abstract
We investigate small networks of chaotic units which

are coupled by their time-delayed variables. In spite of
the time delay, the units can synchronize isochronally,
i.e. without time shift. Moreover, networks can not
only synchronize completely, but can also split into
different synchronized sublattices. These synchroniza-
tion patterns are stable attractors of the network dy-
namics. In this contribution we present different net-
works with their associated behaviors and synchroniza-
tion patterns.
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1 Introduction
Chaos synchronization is a counter-intuitive phe-

nomenon. On one hand, a chaotic system is unpre-
dictable. Two chaotic systems, starting from almost
identical initial states, end in completely different tra-
jectories. On the other hand, two identical chaotic units
which are coupled to each other can synchronize to a
common chaotic trajectory. The system is still chaotic,
but after a transient the two chaotic trajectories are
locked to each other [Pikovsky et al., 2001; Schus-
ter and Just, 2005]. This phenomenon has attracted
a lot of research activities, partly because chaos syn-
chronization has the potential to be applied for novel
secure communication systems [Pecora and Carroll,
1990; Cuomo and Oppenheim, 1993]. In fact, synchro-
nization and bit exchange with chaotic semiconductor
networks has recently been demonstrated over a dis-
tance of 120 km in a public fiber-optic communication
network [Argyris et al., 2005]. In this case, the cou-
pling between the chaotic lasers was uni-directional,
the sender was driving the receiver. For bi-directional
couplings, when two chaotic units are interacting, addi-

tional interesting applications have been suggested. In
this case, secret information may be transmitted over
a public channel. Although the algorithm as well as
all the parameters are public, any attacker is not able to
decipher the secret message [Klein et al., 2006a, 2005].
Typically, the coupling between chaotic units has a

time delay due to the transmission of the exchanged
signal. Nevertheless, chaotic units can synchronize
without time shift, isochronically, although the delay
time may be extremely long compared to the time
scales of the chaotic units. This – again counter-
intuitive – phenomenon has recently been demon-
strated with chaotic semiconductor lasers [Klein et al.,
2006b; Fischer et al., 2006; Sivaprakasam et al., 2003;
Lee et al., 2006], and it is discussed in the context of
corresponding measurements on correlated neural ac-
tivity [Cho, 2006; Engel et al., 1991; Campbell and
Wang, 1998].
Several chaotic units may be coupled to a network

with delayed interactions. Such a network can syn-
chronize completely to a single chaotic trajectory, or
it may end in a state of several clusters, depending on
the topology of the network or the distribution of de-
lay times [Atay et al., 2004; Matskiv et al., 2004; Ma-
soller and Martí, 2005; Topaj et al., 2001]. Recently
another phenomenon has been reported for chaotic net-
works: Sublattice synchronization. If a small network
can be decomposed into two sublattices, then the units
in each sublattice can synchronize to a common chaotic
trajectory although they are not directly coupled. The
coupling of one sublattice is relayed by the chaotic tra-
jectory of a different sublattice. The trajectories of dif-
ferent sublattices are only weakly correlated, but not
synchronized [Kestler et al., 2007].
In this talk we want to investigate patterns of chaos

synchronization for several lattices with uni- and bi-
directional couplings with time delay. There exists
a mathematical theory to classify possible solutions



Figure 1. Two mutually coupled units.

of nonlinear differential or difference equations for a
given lattice [Golubitsky and Stewart, 2006]. However,
this theory does not determine the stability of these so-
lutions. But in order to describe physical or biological
dynamic networks, we are interested in stable patterns
of chaotic networks. The patterns which are discussed
in this presentation are attractors in phase space, any
perturbation of the system will relax to these patterns
which move chaotically on some high dimensional syn-
chronization manifold.
Our results are demonstrated for iterated maps, for

the sake of simplicity and since we can calculate the
stability of these networks analytically. But we found
these patterns for other systems, as well, for example
for the Lang-Kobayashi rate equations describing semi-
conductor lasers. Hence we think that our results are
generic.

2 Two interacting units
We start with the simplest network: Two units with de-

layed couplings and delayed self-feedback, as sketched
in Fig. 1.
For iterated maps, this network is described by the fol-

lowing equations:

at = (1− ε)f(at−1) + εκf(at−τ ) + ε(1− κ)f(bt−τ )
bt = (1− ε)f(bt−1) + εκf(bt−τ ) + ε(1− κ)f(at−τ )

(1)

where f(x) is some chaotic map, for example the
Bernoulli shift,

f(x) = α x mod 1 (2)

with α > 1. In this case, the system is chaotic for all
parameters 0 < ε < 1 and 0 < κ < 1. ε measures the
total strength of the delay terms and κ the strength of
the self-feedback relative to the delayed coupling.
Obviously, the synchronized chaotic trajectory at =

bt is a solution of Eq. (1). Its stability is determined by
τ conditional Lyapunov exponents which describe per-
turbations perpendicular to the synchronization man-
ifold. For the Bernoulli map, these Lyapunov expo-
nents have been calculated analytically [Lepri et al.,
1993; Kestler et al., 2007], and for infinitely long delay,
τ →∞, one obtains the phase diagram of Fig. 2.
In region I and II the two units are synchronized to

an identical chaotic trajectory at = bt. Although the
two units are coupled with a long delay τ , they are
completely synchronized without any time shift. For
τ →∞, this region is symmetric about the line κ = 1

2 .
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Figure 2. Phase diagram for α = 3/2 .

Complete synchronization can be understood by con-
sidering a single unit driven by some signal st:

at = (1− ε)f(at−1) + εκf(at−τ ) + st . (3)

If the system is not chaotic, i.e. if its Lyapunov ex-
ponent is negative, then the trajectory at relaxes to a
unique trajectory determined by the drive st. For the
Bernoulli shift, this region is indicated by II + III in
Fig. 2.
Now let us rewrite Eq. (1):

at = (1− ε)f(at−1) + ε(2κ− 1)f(at−τ ) +
+ ε(1− κ)f(at−τ ) + ε(1− κ)f(bt−τ ) ,

bt = (1− ε)f(bt−1) + ε(2κ− 1)f(bt−τ ) +
+ ε(1− κ)f(bt−τ ) + ε(1− κ)f(at−τ ).

(4)

Both systems are driven by the identical signal

st = ε(1− κ)
[
f(at−τ ) + f(bt−τ )

]
. (5)

Hence, for

κ̃ = 2κ− 1 (6)

the system is described by Eq. (3). The phase bound-
ary of the driven system, region II + III, and the
phase boundary of the interacting system, region I +
II, are connected with each other: With the mapping
of Eq. (6), one phase boundary can be obtained from
the other. This mapping does not only hold for the
Bernoulli shift but for any chaotic system, provided that
the signal does not change the Lyapunov exponent of
the driven system. For example, we found this relation
for the Lang-Kobayashi laser equations.
Let us assume that we record the synchronized trajec-

tory at = bt of two interacting chaotic units. Now



Figure 3. Ring of 4 units.

let us insert the recorded trajectory bt into Eq. (1).
How will at respond to this drive? We find that in
regions II and III the unit A will synchronize com-
pletely to the recorded trajectory bt, whereas in region
I the unit A does not synchronize. Although the two
interacting units A and B do synchronize, the unit A
does not follow the recorded trajectory in region I. This
shows that bi-directional interaction is different from
uni-directional drive.

3 Sublattice synchronization
The response of a single chaotic unit to an external

drive, Fig. 2, determines also the phase diagram of a
ring of four chaotic units. Additionally, it shows a new
phenomenon: sublattice synchronization. Consider the
ring of four identical units of Fig. 3.
Obviously, the two units A and C receive identical in-

put from the units B and D. Consequently, they will
respond with an identical trajectory in the regions II
and III of Fig. 2, since for those parameters the units
have negative Lyapunov exponents. The same argu-
ment holds for the two units B and D. That leads to
sublattice synchronization in region III of Fig. 2: A and
C have an identical chaotic trajectory and B and D have
a different one. Although there is a delay of arbitrary
long time of the transmitted signal, synchronization is
complete, without any time shift. The synchronization
of A and C is mediated by the chaotic trajectory of B
and D. But the two trajectories have only weak corre-
lations, they are not synchronized. Numerical calcu-
lations of the Bernoulli system with small values of τ
show that there is no generalized synchronization, ei-
ther.
Sublattice synchronization has been shown for other

lattices, as well. For example, the lattice of Fig. 4 can
be decomposed into three sublattices. For some param-
eters of the Bernoulli system we find sublattice syn-
chronization with three chaotic trajectories. Again, the
synchronized units are not directly coupled, but they
are indirectly connected via the trajectories of the other
sublattices.

4 Spreading chaotic motifs
The response of a chaotic unit to an external drive,

Fig. 2, points to another interesting phenomenon. Con-
sider a triangle of chaotic units with bi-directional cou-
plings as sketched in Fig. 5(a).

Figure 4. Sublattice synchronization in a triangular lattice with pe-
riodic boundaries. The double lines signify bi-directional couplings.
The self-feedback is not drawn to simplify the illustration.

Choose the parameters such that the triangle is com-
pletely disordered, but each unit has negative Lyapunov
exponents when it is separated from the two others.
(Both conditions are fulfilled in region III of Fig. 5(b),
which shows analytical results for the Bernoulli sys-
tem.) When we record the three time series at, bt and
ct we find three different weakly correlated chaotic tra-
jectories. Now feed the two trajectories bt and ct into
an infinitely large lattice of identical units with uni-
directional couplings as shown in Fig. 5(a). Each unit
receives two input signals from two other units. But
since all Lyapunov exponents are negative, the system
responds with the three chaotic trajectories at, bt and
ct. Although the units of the initial triangle are not syn-
chronized, their pattern of chaos is transmitted to the
infinite lattice, after some transient time. All units of
the same sublattice are completely synchronized with-
out time shift, although the coupling has a long delay
time τ .
For some parameters κ and ε, namely in regions I and

II of Fig. 5(b), the three units of the triangle are com-
pletely synchronized. In region I, only the the three
units are synchronized while the other units remain un-
synchronized. In region II, the other units, too, get syn-
chronized to the triangle (because all Lyapunov expo-
nents are negative), so the whole lattice is completely
synchronized.

5 Synchronization by restoring symmetry
In general we expect that the larger the network is, the

smaller the region in the parameter space is where the
network synchronizes. For example, a ring of N = 6
units has a smaller region of synchronization than the
region II and III of Fig. 2 for N = 4. With increas-
ing N synchronization finally disappears completely.
However, we found a counterexample where adding a
unit restores synchronization. Consider the chain of 5
units shown in Fig. 6.
The coupling to the two outer units has a longer de-

lay time than the internal couplings. There is no self-
feedback, κ = 0. Now remove unit E and rescale the
coupling to unit D. In this case, a synchronized solution
does not exist. Numerical simulations of the Bernoulli
system and the laser equations show high correlations
between units A and C with time shift ∆ = τ1−τ2, and
between B and D with zero time shift, but the correla-
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Figure 5. Triangle (three bi-directionally coupled units) with a uni-
directionally attached infinitely large lattice. (a) Double lines sig-
nify bi-directional couplings whereas arrows show uni-directional
couplings. The self-feedback is not drawn to simplify the illustra-
tion. The colors indicate the synchronization pattern (sublattice syn-
chronization) of region III. (b) Phase diagram for Bernoulli system,
α = 3/2, analytical result.

Figure 6. Chain of five units with two different time delays and
without self-feedback.

tion coefficient does not achieve the value one. On the
other side, if we add unit E we restore the symmetry
of the chain. In this case we find sublattice synchro-
nization with time shift between the outer units and the
central one:

at = et = ct−∆; bt = dt (7)

If τ1 is greater than τ2, the central unit is earlier than the
chaotic trajectory of the outer ones, it leads, whereas
for the opposite case it lags behind.

Figure 7. Each unit on one side is coupled to all units of the other
side. The delay times are pairwise identical.

6 Cooperative pairwise synchronization
Is it possible to synchronize two sets of chaotic units

with a single coupling channel? In fact, we found
an example where two sets of chaotic units are bi-
directionally connected by the sum of their units, as
indicated in Fig. 7.
All units are identical, but the delay times of their cou-

plings are different. The units have pairwise identical
delay times, i.e. Ak and Bk have a coupling delay time
2τk + τ which is enforced by a self-feedback with de-
lay time τs = 2τk + τ . Hence, for one pair, N = 1,
we obtain the phase diagram of Fig. 2, where the two
units are completely synchronized in regions I and II.
For a large number N of units, each A unit receives the
signal

st = ε(1− κ)
1
N

N∑
k=1

f(bt−(2τk+τ)) (8)

and vice versa. Hence the unit Ak receives only a weak
signal of the order 1/N from its counterpart Bk. Nev-
ertheless, we find that the network synchronizes to a
state of pairwise identical chaotic trajectories, ak,t =
bk,t; k = 1, . . . , N . For the Bernoulli system, the re-
gion of pairwise synchronization is similar to region II
of Fig. 2. There is no synchronization among units of
the same side. Each unit receives the sum of all chaotic
trajectories, but it responds only to the tiny part which
belongs to its counterpart. The synchronization is a co-
operative effect. As soon as a single unit is detuned, the
whole network loses synchronization.

7 Summary
Small networks of chaotic units with time-delayed

couplings show interesting patterns of chaos syn-
chrony. These patterns are stable attractors of the net-
work dynamics.
Two interacting units with self-feedback can synchro-

nize completely, without time shift, even if the delay
time is extremely large.
Sublattice synchronization is found for lattices which

can be decomposed into a few sublattices. Each sub-
lattice is completely synchronized, but different sub-



lattices are only weakly correlated. Synchronization is
relayed by different chaotic trajectories.
Synchronization may depend on the symmetry of the

network. When the symmetry of a disordered chain
is restored, sublattice or complete synchronization is
restored, too.
Finally, a bi-partite network, where the two parts are

coupled by a single mutual signal, shows pairwise com-
plete synchronization, whereas the units of each part do
not synchronize. Each unit responds to the weak con-
tribution of its partner in the other part of the network.
Pairwise synchronization is a cooperative effect: De-
tuning a single unit destroys the complete synchroniza-
tion of the whole network.
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