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Abstract: New approach for modelling a physical hysteresis damping the flexible spacecraft
structure oscillations, is developed. New results on communication satellite attitude guidance
and digital robust control with precise pointing the large-scale flexible antennas, are presented.
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1. INTRODUCTION

A correct mathematical description of physical hystere-
sis is a basic problem for an internal friction the-
ory (N.N. Davidenkov, 1938; A.Yu. Ishlinskii, 1944; W.
Prager, 1956; J.F. Besseling, 1958; Ye.S. Sorokin, 1960;
Ya.G. Panovko (1960); G.S. Pisarenko (1970); V.A. Pal-
mov (1976); L.F. Kochneva (1979) et al.) with regard
to the well-known elastico-plastic micro-deformations of
materials. Mathematical methods for qualitative analysis
of general hysteresis models are represented in a number
of research works (Krasnosel’skii and Pokrovskii, 1983).
Recently, new approach was developed for description of
physical hysteresis (Somov, 2000, 2004), which is based on
set-valued differential equation with discontinuous right-
side. The paper briefly presents new results on modelling
a hysteresis damping and their application to the attitude
guidance and robust digital control of large-scale commu-
nication spacecraft (SC) with precise pointing the flexible
weak-damping antennas.

2. MODEL OF PHYSICAL HYSTERESIS

Let x(t) is a real piecewise-differetiated function for t ∈
Tt0 ≡ [t0,+∞). Let there be the values x̌ν =x(tν) of the
function in the time moments tν , ν ∈ N0 ≡ [0, 1, 2, · · · ),
when the last changing a sign of a speed ẋ(t) was hap-
pened, e.g.

x̌ν ≡ x(tν)|tν :Signẋ(tν+0) 6=Signẋ(tν−0). (1)
A local function x̃ν(t) on each a local time semi-interval
Tν≡ [tν , tν+1) is introduced as

x̃ν(t) = x(t)− x̌ν ∀t ∈ Tν , (2)
and the functional kν(x(t)) ≡ kν(k, p, p̃, x̃ν) of the hystere-
sis function shape is defined for t ∈ Tν as

kν(x(t)) = k(1− (1− p) exp(−p̃|x̃ν |)), (3)
where k, p, p̃ are constant positive parameters.
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Fig. 1. Results of a hysteresis model testing

For a constant parameter αh > 0 and x0 ≡ x(t0) a normed
hysteresis function r(t)=Hst(·, x(t)) with memory

r(t) = Hst(ah, αh, kν(x(t)), ro, x(t));

r(t0)≡ro =Hst(ah, αh, kν(x0), ro, x0)
(4)

and restriction on its module by parameter ah > 0, is
defined as a right-sided solution of the equations

D+r=
{
kν |r−ahSign ẋ(t)|αh ẋ(t) |r| < ah

0 |r| ≥ ah
;

r(t0 + 0) = ro.

(5)

Differential equation in (5) has a discontinuous right side
and ambiquitely depends on forcing function x(t) and its
speed ẋ(t), e.g. it depends on all own prehistory which is
expressed by the functional kν(x) (3). At initial condition
yo ≡ y0 = y(t0) for x = x0 the hysteresis function y(t) is
defined as follows

y(t) ≡ m Hst(ah, αh, kν , ro, x(t)); ro ≡ yo/m (6)
with a constant positive scale coefficient m> 0. In devel-
oped model (1) – (6) a parameter p̃ determines on the



whole a degree of convergence for a trajectory y(t) =
Fh(·, x(t)) in the plane xOy on symmetric limiting static
loop under a harmonic forcing function x(t)=A sinωt with
fixed values A,ω and initial condition yo =y0 with |yo|/m<
ah. For this model all requirements are realized, including
the famous requirements on a model vibro-correctness by
M.A. Krasnosel’skii (Krasnosel’skii and Pokrovskii, 1983),
and also on a frequency independence and a fine return on
a main symmetric limiting hysteresis loop after a short-
term passage on a displaced local hysteresis loop (Palmov,
1976; Kochneva, 1979). Last properties are verified in
prearranged scale by Fig. 1 for the hysteresis model with
parameters m=1, αh =1.5, ah =200, k=5.125 10−4, p=2,
p̃=0.75 10−3 when the forcing function have the form:

x(t)=

{
A sinω1t (0 ≤ t < τ1)&(τ2 ≤ t ≤ τ3);
B(1+sinω2t) τ1 ≤ t < τ2,

A = 200; B = 40; ω1 = 1; ω2 = 5; τ3 = 40;

τ1 ≡ 5π − τ∗; τ2 = 7π − τ∗; τ∗ ≈ 0.03415π.

3. MATHEMATICAL MODELS

We introduce the inertial reference frame (IRF) I⊕, the
geodesic Greenwich reference frame (GRF) Ee and the
geodesic horizon reference frame (HRF) Eh

e . There are also
standard defined the SC body reference frame (BRF) B
(Oxyz), the orbit reference frame (ORF) O (Oxoyozo) and
the antenna (sensor) reference frame (SRF) S (Sxsyszs)
with an origin S. The BRF attitude with respect to the IRF
I⊕ is defined by quaternion Λ = (λ0,λ),λ = (λ1, λ2, λ3),
and with respect to the ORF – by column φ={φi, i=1÷3}
of angles φ1 = ψ, φ2 = ϕ, φ3 = θ in the sequence 13′2′′.

Let vectors ω(t) and v(t) are standard denotations of the
SC body angular rate and

Fig. 2. A normed hysteresis

its mass center velocity
with respect to the IRF, re-
spectively, and vector vδ(t)
presents the v(t) deviation
with respect to nominal SC
orbital motion at the Earth
gravity field. Applied fur-
ther symbols 〈·, ·〉, ×, { · },
[ · ] for vectors and [a×],
(·)t for matrixes are con-
ventional denotations. For
a fixed position of flexible

structures on the SC body with some simplifying assump-
tions and t ∈ Tt0 = [t0,+∞) model of the SC spatial
motion is appeared as follows:

Λ̇=Λ◦ω/2; Ao{∗vδ, ω̇, q̈, β̈}={Fv
δ ,F

ω,Fq,Fβ}; (7)

Fv
δ = −m(ω × vδ) + ω × (L× ω − 2L̇) + Rc; L=Mqq;

Fω = −L× (ω × vδ) + Mg − ω×G + Mo;Mg =−Ahβ̇;
Fq ={−(Ωq

j)
2mjrj(t)}; Fβ =At

hω + Mg + Mg
d + Mg

f ;

rj(t)=Hst(aj
h, α

j
h, k

j
ν(xj), xoj , xj(t)); xj(t)=qj(t)/mj ;

Ao=


mI3 [−L×] Mq 0
[L×] J Dq Dg

Mt
q Dt

q I 0
0 Dt

g 0 Ag

 ;

G = Go + Dqq̇ + Dgβ̇; Go = Jω + H(β); ω = {ωi};

H(β)=ΣHp =hgΣhp(βp);Ah = [∂Hβ)/∂β] ; β = {βp},
where hg is a constant own angular momentum (AM) of
each gyrodine (GD) and xoj = qj(t0)/mj by conditions
(6). Parameters mj , a

j
h, α

j
h, kj , pj , p̃j by functionals Hst(·)

and kj
ν for tones of the SC structure oscillations are defined

by an identification starting from analysis of experimental
hysteresis loop for normed mechanical deformation ε̄ and
strength σ̄ of the structure material, see Fig. 2.

At standard linear modelling one can have
Fq = {−((δq

j/π) Ωq
j q̇j + (Ωq

j)
2 qj)}, (8)

where δq
j ∈ [10−3, 2 10−4] is decrement by j-tone of the

SC structure flexible oscillations. The antenna’s flexibility
results in additional angular deflection of the SRF S with
respect its nominal position in the BRF, including its
line-of-sight Sxs. The deflection is presented by column
δφ≡{δφi, i=1÷3} of the angels δφi as follows

δφ = Qq q, (9)
where matrix Qq is calculated by the antenna’s shape
modes.

The torque column Mg
d of physical and electro-magnetic

damping is nonlinear continuous function, and column
Mg

f of the rolling friction torques in bearings on GD’s
precession axes is discontinuous vector-function. The gyro
moment cluster (GMC) control vector Mg(t) = {mg

p(t)}
have components which are described by relation

mg
p(t) = ag Zh[Sat(Qntr(ug

pk, bu), Bu),Tu]; k ∈ N0, (10)

where N0 ≡ [0, 1, 2, ...), ag = const, discrete functions
ug

pk ≡ ug
p(tk) are outputs of nonlinear control law, and

functions Sat(x, a) and Qntr(x, a) are general-usage ones,
while the holder model with the period Tu is of the type:
y(t) = Zh[xk,Tu] = xk ∀t ∈ [tk, tk+1). Model (7),(10)
is applied then the GD driver have small gear ratio, e.g.
for ”soft” gyromoment control where the nutation theory
must be used.

For the GD driver gear with large transfer ratio the
command ug

p = β̇ c
p (t) and the true β̇p(t) precession rates

are close. Then the assumptions of the control moment
gyros precession theory are satisfied, and the vector Mg =
{Mg

i } of the GMC output control torque is presented by
relation

Mg =−
∗
H=−Ah(β)ug(t); β̇ = ug(t) ≡ {ug

p(t)}, (11)

where ug
p(t) = ag Zh[Sat(Qntr(ug

pk, bu), Bu),Tu] with a
constant ag.Moreover matrix Dg = 0, last vector equation
in model (7) must be rejected and one can to obtain so-
called ”stiff” gyromoment control.

4. THE PROBLEM STATEMENT

Applied onboard measuring subsystem is based on a pre-
cise gyro unit corrected by the fine fixed-head star trackers.
This subsystem is intended for precise determination of the
SC BRF B angular position with respect to the IRF I⊕.
Applied contemporary filtering & alignment calibration
algorithms and a discrete astatic observer give finally a
fine discrete estimating the SC angular motion coordinates
presented by the quaternion estimation Λ̂s and the angular
rate estimation ω̂s, where s ∈ N0 and a measuring period



Fig. 3. The fault-tolerant 2-SPE scheme of the GMC

Tq = ts+1 − ts ≤ Tu is multiply with respect to a control
period Tu.

Applied the 2-SPE scheme on 4 GDs with the AM vectors
Hp, p = 1 ÷ 4 is presented in Fig. 3 (Somov et al.,
2005b,a). Into canonical reference frame Ogx

g
cy

g
cz

g
c of the

gyro moment cluster (GMC) the AM projections of the
first (GD-1 & GD-2) and the second (GD-3 & GD-4) pairs
of the GDs always are summed up along the axis Ogx

g
c .

Sometimes only 3 executive devices are used.

At the GMC Z-arrangement on the SC body, when the
axis Ogx

g
c is the same as the axis Oz of the BRF, for

σ = π/6 and βp ∈ [−π/2, π/2] the following 4 efficient
GMC configurations Z-I, I=1÷ 4 (GMC without GD-I)
are possible on the basis of only 3 active GDs. These
configurations are represented at nominal state in Fig. 3b
(Z-4 or Z-3) and in Fig. 3c (Z-2 or Z-1). So, the GMC
scheme in Fig. 3a is fault-tolerant under diagnostics of
the faulted GD and the GMC reconfiguration by passages
between configurations Z-I by some logic conditions.

Fig. 4. Antenna pointing by the HEO spacecraft guidance

Fig. 5. Communication spacecraft Sesat with rotated SAPs

When a spacecraft is moving at a distant part of the
high-elliptical orbit (HEO) by Molniya type (with apogee
46370 km and perigee 7370 km, Fig. 4) there are fulfilled
sequence of the angular motion modes:

1◦ the SC antenna pointing to a given point at the Earth
surface and then the target tracking during given time
interval Tn ≡ [tn0 , t

n
f ];

2◦ the SC antenna guidance from any Earth point to
next point during time t∈Tp ≡ [tp0, t

p
f ], tpf ≡ tp0 + Tp,

where Tp is given, see Fig. 4.

At the SC lifetime up to 15 years its structure inertial
and flexible characteristics are slowly changed in wide
boundaries, and the solar array panels (SAPs) are slowly
rotated on the angle γ(t) ∈ [0, 2π] with respect to the
SC body for their tracking the Sun direction, see Fig. 5.
Therefore at inertial matrix Ao and partial frequencies Ωq

j

of the SC structure are not complete certain. Problems
consist in

• synthesis of the SC antenna guidance laws for calcu-
lating Λp(t), angular rate ωp(t) and acceleration ω̇p(t)=
εp(t) vectors of the SC body programmed motion by tasks
1◦, 2◦;

• dynamical design of simple and reliable GMC digital
control law ug

k = {ug
pk} on discrete estimations Λ̂s, ω̂s

and the GMC state vector βk values when the SC structure
characteristics are uncertain and its damping is very weak.

5. THE ANTENNA GUIDANCE LAWS

The analytic matching solution have been obtained for
problem of the SC angular guidance at its antenna pointing
to the Earth target and the same target tracking at time
t ∈ Tn with tnf ≡ tn0 + Tn. Solution is based on a vector
composition of all elemental motions in the GRF Ee

using the HRF Eh
e , the SRF S and orthogonal matrix

Cs
h ≡ C̃ =‖ c̃ij ‖ which defines the SRF S orientation

with respect to the HRF Eh
e .



Fig. 6. The SC natural logarithmic amplitude frequency
characteristics on the yaw (φ1), roll (φ2) and pith (φ3)
channels for different SAPs’ positions: for γ = 0 by
entire blue line , for γ = 45◦ by dotted green line and
for γ = 90◦ by pointed red line.

Normed to the communication oblique range D vector v
and the SC body programmed angular rate vector ωp with
respect the GRF Ee are presented in the SRF S as vs

e =
{ṽs

ei, i = 1÷ 3} and ωsp
e = {ωsp

ei , i = 1÷ 3}. Calculation of
vector ωsp

e is carried out by explicit analytical relations

ωsp
e1 = − ṽs

e3c̃21 + ṽs
e2c̃31

2c̃11
; ωsp

e2 =−ṽs
e3; ω

sp
e3 = ṽs

e2. (12)

By numerical solution of the quaternion differential equa-
tion Λ̇

sp

e = Λsp
e ◦ωsp

e /2 one can obtain values of vectors
λsp

es ≡ λsp
e (ts) for the discrete time moments ts ∈ Tn

∀s=0÷ nq, nq = Tn/Tq with period Tq when initial value
Λsp

e (tn0 ) is given.

Further solution is based on the elegant extrapolation of
values σsp

es = λsp
es/(1 + λsp

0 es) by the vector of Rodrigues’
modified parameters and values ωsp

es by the angular rate
vector. The extrapolation is carried out by these two sets
of nq coordinated 3-degree vector splines with analytical
obtaining a high-precise approximation of the SRF S
guidance motion with respect to the GRF Ee both on
vector of angular acceleration and on vector of its local
derivative. At last stage, required functions Λp(t), ωp(t),
εp(t) and ε̇p(t) =

∗
εp(t) + ωp(t) × εp(t) is calculated by

explicit formulas.

Fast onboard algorithms for the SC antenna guidance by
its rotation maneuver into given time interval t ∈ Tp with
restrictions to ωp(t) and ω̇p(t) corresponding restrictions
to h(β(t)) and β̇(t) in a class of the SC angular motions,
were elaborated. Here the boundary conditions on left
(t = tp0) and right (t = tpf ) trajectory ends are given as
follows:

Fig. 7. The spacecraft natural logarithmic amplitude and
phase frequency characteristics on the roll channel
continuous open-loop

Λp(tp0)=Λp
0; ωp(tp0)=ωp

0; εp(tp0)=εp
0; (13)

Λp(tpf )=Λp
f ; ωp(tpf )≡ωp

f ; εp(tpf )=εp
f . (14)

Developed approach to the problem is based on necessary
and sufficient condition for solvability of Darboux problem.
Solution is obtained as result of composition by three
simultaneously derived elementary rotations of embedded
bases Ek about units ek of Euler axes, k = 1÷3, which
position is defined from the boundary conditions (13)
and (14) for initial spatial problem. For all 3 elementary
rotations with respect to units ek the boundary conditions
are analytically assigned. Into the IRF I⊕ the quaternion
Λp(t) is defined by the production

Λp(t) = Λp
0◦Λ

p
1(t)◦Λ

p
2(t)◦Λ

p
3(t), (15)

where Λp
k(t) = (cos(ϕp

k(t)/2), sin(ϕp
k(t)/2) ek), ek is unit

of Euler axis by k’s rotation, and functions ϕp
k(t) present

the elementary rotation angles in analytical form. These
functions were selected in class of splines by 5 degree.
Explicit time functions Λp(t), ωp(t) and εp(t) are applied
at onboard computer for the time moments ts by the
SC antenna guidance at its both pointing (ts ∈ Tn) and
rotation maneuver (ts∈Tp).

6. THE STRUCTURE OSCILLATIONS

Presented in Somov (2002) and applied here the distri-
bution law fρ(β) = 0 of the GMC normed AM h(β) =
Σhp(βp) between GD’s pairs ensures its singular state
only at separate time moments and bijectively connects
the vector Mg(t) with vectors β(t) and β̇(t) = ug(t).
Therefore for preliminary study it is rational to considerate
the column Mg(t)={Mg

i } as control vector.

Applying the state vector x={φ,vδ,ω, q̇,q} and denota-
tions u(t)=Mg(t), y(t)=φ(t) for a linearizing procedure
of the SC model (7) at neighbourhood of the SC equilib-
rium in the ORF O one can obtain standard continuous
model ẋ = Ax + Bu, y = Cx. Comparison of linear (8)
and hysteresis (7) modelling of the SC structure weak-
damped oscillations was developed by numerical methods.

The SC natural logarithmic frequency characteristics on
the roll channel continuous open-loop are presented in
Fig. 7 at linear modelling with decrement δq

j = 2 10−3

for all tones. At hysteresis modelling the same ”frequency



Fig. 8. The SC open-loop pseudo-frequency characteristics
on roll channel: - - - - - without discrete filter, —–
with discrete filter.

characteristics” were also computed by numerical simu-
lation for a set of input command amplitudes. Obtained
results are close, but resonance and anti-resonance ”peaks”
have very narrow form for hysteresis modelling, these dif-
ferences are significant only for small input amplitudes.

7. FILTERING AND DIGITAL CONTROL

The error quaternion is E = (e0, e) = Λ̃p(t)◦Λ, the Euler
parameters’ vector E = {e0, e}, and the attitude error’s
matrix is Ce ≡ C(E) = I3 − 2[e×]Qt

e, where matrix
Qe ≡ Q(E) = I3e0 + [e×] with det(Qe)=e0 6= 0.

Let the GMC’s required control torque vector Mg (11) is
formed as Mg = ω×Go+J(Ceω̇p(t)−[ω×]Ceωp(t)+mg),
where vector mg is a stabilizing component.

At given digital control period Tu discrete frequency char-
acteristics are computed via absolute pseudo-frequency
λ = 2tg(ωTu/2)/Tu. For period’s multiple nq and a fil-
tering period Tq = Tu/nq applied filter have the discrete
transfer function Wf(zq) = (1 + b1)/(1 + b1z−1

q ), where
coefficient b1 = − exp(−Tq/Tf) and zq = exp(sTq).

By own absolute pseudo-frequency
λq =(2/Tq)tg(ωTq/2) = nq(2/Tu)tg(arctg(λTu/2)/nq)

the discrete frequency characteristics W̃f(jλq) is presented
as follows W̃f(jλq) = Kλ

f (jλq − qλ
q )/(jλq − pλ

q), where
Kλ

f =(1 + b1)/(1− b1); qλ
q =−(2/Tq) and pλ

q =Kλ
f q

λ
q .

Discrete error quaternion and Euler parameters’ vector are
Es =(e0s, es)=Λ̃p(ts)◦Λ̂s and Es ={e0s, es}, and the error
filtering is executed by the relations

x̃s+1 = Ãx̃s + B̃es; ef
s = C̃x̃s + D̃es, (16)

where matrices Ã, B̃, C̃ and D̃ have diagonal form with
ãi =−bf

1; b̃i =bf
1; c̃i =−(1 + bf

1) and d̃i =1 + bf
1.

Applied stabilizing component mg
k is formed as follows:

εk =−2ef
k;gk+1 = Bgk + Cεk;mg

k =Kg(gk + Pεk). (17)
Here matrices B,C,P and Kg have diagonal form with

ai = [(2/Tu)τ1i − 1]/[(2/Tu)τ1i + 1];

bi = [(2/Tu)τ2i − 1]/[(2/Tu)τ2i + 1];

pi = (1− bi)/(1− ai); ci = pi(bi − ai),

Fig. 9. Transient processes by attitude angles with respect
to the ORF

Fig. 10. Transient processes by angular rates

where τ1i, τ2i and kg
i are pseudo-constant parameters

which are selected and then turning (in progress of So-
mov (2001) and Somov (2007)) for ensuring the robust
properties of gyromoment attitude control system by the
flexible weak damping spacecraft. Only the SC attitude
filtered error vector ef

k is applied for forming the stabilizing
component mg

k (17).

The GMC’s control torque is digitally formed by relation

Mg
k = ω̂k×Ĝo

k + Ĵ(Ce
kεp

k − [ω̂k×]Ce
kωp

k + mg
k), (18)

where Ĝo
k = Ĵω̂k +H(βk), Ce

k = C(E f
k), εp

k = ω̇p(tk) and
ωp

k = ωp(tk). At last, the GMC digital control law ug
k is

appeared from conditions
Ah(βk)ug

k = −Mg
k ; 〈∂fρ(βk)/∂β,ug

k〉 = 0. (19)
The filtering efficiency is demonstrated by pseudo-frequency
characteristics in Fig. 8 for same the SC roll channel but
by open-loop with digital control, when the control period
Tu = 4 s, the filtering period Tq = 1 s and the time
constant Tf = 2 s. Here is not stability on the channel
without the discrete filter (16).

8. COMPUTER SIMULATION

A software system was applied for computer simulation
and dynamic analysis of the flexible SC antenna pointing
model (7) and (8) with discrete filtering (16), discrete
control law (17), (18) and forming the GMC digital control
(19). For considered variants of digital gyromoment control



Fig. 11. The SC antenna oscillations at sequence of the
guidance modes

Fig. 12. The SC antenna’s weak-damped oscillations at a
longtime tracking

(see pseudo-frequency characteristics on the open-loop roll
channel in Fig. 8) some results are presented in Fig. 9 and
Fig. 10 on the SC attitude stabilization in the ORF O
when for t = t0 = 0 initial conditions on all variables
are zero except φi(0) = 0.5 deg for all i = 1 ÷ 3.
Additional angular deflection by antenna’s flexibility δφ
(9) are presented
• in Fig. 11 as sequence of the SC antenna guidance

modes: 1◦ – pointing and target tracking, 2◦ – guid-
ance by a rotation maneuver to next target and again
1◦ – the same next target tracking, see Fig. 4;

• in Fig. 12 – the antenna’s weak-damped oscillations
at a longtime tracking.

Numerical calculations prove that for small amplitude of
the SC structure oscillations, results are significantly differ
at linear and a hysteresis modelling of a weak structure
damping.

9. CONCLUSIONS

New approach for modelling a physical hysteresis was
developed and it application for digital gyromoment atti-
tude control of a flexible spacecraft structure was consid-
ered. New results on the SC antennas’ guidance, a digital

gyromoment spacecraft attitude control and the flexible
antennas fine pointing, were presented.

These results were also successfully applied for a space
free-flying robot at transportation the flexible large-scale
mechanical payload (Somov, 2006).
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