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Abstract

Legged locomotion belongs to the category of Non-
linear hybrid systems, which makes it particularly in-
teresting. To adequately design a controller for such
systems, requirements as ability to ensure integrity, ar-
ticulation of long time and short time horizons, Scala-
bility in time and space, Coordinated decentralization
of the decision and control system, Adaptivity and Ro-
bustness arise. Optimal control results have been ex-
plored, once they can provide the required control syn-
thesis. This led to the selection of a Model Predictive
Control scheme. After presenting the theoretical back-
ground, use-cases with different degrees of complexity
have been formulated and implemented.

The results show that optimal control techniques are
very powerful, but also tricky and time consuming in
case of higher complexity.
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1 Introduction

Legged locomotion is hard to duplicate, due to the
great complexity of such physical system, given by the
large number of degrees of freedom (DOF), intrinsic
instability and others. Regardless, legs are efficient and
versatile, which makes them appropriated for nature
and man-made environments, since these are unstruc-
tured and soft-surface based.

Artificial bipedal systems are already a reality and sig-
nificant research is been currently conducted on the
topic, but they still face challenges in a variety of fields,
namely power management, performance or anthropo-
morphism.

This paper focus is on the control system. The goal is
to design a control layer that allows the bipedal system
to perform well and reliably while ensuring anthropo-
morphic moves.
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For such, a model predictive controller has chosen and
put to test.

This paper is organized as follows: the system and
background concepts are presented first then the con-
sidered requirements and proposed approach is care-
fully detailed and finally the experimental use-case and
conclusions are debated.

2 The System and related Concepts

From an Engineering perspective, this is a multi-input
Multi-Output (MIMO) dynamical system, with high di-
mension and a chain configuration.

The governing equation of this dynamical system is

M(q)i+ C(q,4)q+ G(q) = Bu+ J"F. (1)

where M is the inertia matrix, C is the centrifugal and
coriolis forces’ matrix, G groups the gravitical terms
while J is the jacobian and F, the terms respectant to
the impact with the ground.

The modeling details were presented in [Guimaraes,
2015].

Equation 1 can be rewritten into a first order non-
linear system generalized form

&= f(z,u,t) 2

From here, a variety of techniques can be employed to
analyze the system.

The two most relevant characteristics are the exis-
tence of impacts and periodic motion. This places us
in the context of hybrid systems and limit cycle con-
vergence/stability analysis.

2.1 Hybrid Systems
A hybrid system displays the evolution in time of both
continuous and discrete variables. It is composed of



— a set of discrete states Q,

— a set of continuous states X = R"™,
— avectorfieldf: Qx X — R",

— a set of initial states Init C Q x X,
— adomainD: Q — PS(X),

— asetofedgesE CQxQ,

— a guard condition G :E — PS(X),
—aresetmapR:Ex X — PS(X)

forming the tuple H = (Q, X, f,Init, D, E,G, R).
Notice that PS(X) stands for the power set of X (set
of all subsets) and a set of control inputs U might be
included.

Modeling hybrid systems is “especially challenging”
[Lygeros, 2004], due to problems in simulation when
the existence and uniqueness of solution are not guar-
anteed. Dead-locks (permanent absence of conditions
that would allow the system to change state) are a com-
mon and undesired situation and at the opposite end is
the Zeno phenomenon - an infinite number of discrete
transitions occurring in finite time. There is an identi-
cal phenomenon called chattering, which differs by not
converging.

The case of non-uniqueness of solution, although al-
lows uncertainty modeling, “requires additional care
when designing controllers for such systems, or
when developing arguments about their performance”,
[Lygeros, 2004], since the arguments have to be true
for all solutions.

Some concepts already presented, or presented here-
after, are not exclusive of hybrid systems. For exam-
ple, the existence and uniqueness of solution is also
a concern in continuous dynamical systems but it is
known that if f is Lipschitz continuous then & = f(z)
, £(0) = z has a solution and it is unique.

Fundamental to finding the conditions of existence
and uniqueness of solution is the concept of Reacha-
bility. A state is reachable if it is possible to get to in
finite time from the current state. All the states reach-
able from a particular state form the reach sets, which
are very important in control because they indicate the
motion capability of the dynamical system. There is
also the notion of backward reachability, which defines
the set of all states the system can be in at a time t
i t O that allow the system to get at t =t O to a state
belonging to a target set. The concept of attainability
is slightly different because it does not include all the
states visited in the past. Other two important proper-
ties are safety and liveness: while safety describes the
ability to maintain in the set a solution that already be-
longs to it, liveness refers to the aptitude to bring into
the set a solution that did not belong to it. Stability is
naturally a safety property.

2.2 Limit cycle

Focusing now on the periodic motion that character-
izes legged locomotion, limit cycle and related con-
cepts will be clarified.

A limit cycle is an asymptotically stable or unstable

periodic orbit with no other periodic orbits nearby.

An orbit x is considered of period Tif 47 > 0 :
x(t+T) =2x(t) Vtand z(t + n) # x(t) for any
n # kT, k being a positive integer.

Poincaré-Bendixson Theorem, claims that if a
closed region of phase space which does not contain
any fixed points can be defined, then it must contain a
closed-orbit” and since gradient potential fields - a cat-
egory in which Lyapunov functions are included - can
not have a closed-orbit, it is impossible to use unmodi-
fied Lyapunov analysis to examine limit cycle stability.

A way to study limit cycle stability is using Poincaré
map (or return map). This method transforms the study
of continuous-time stability of a limit cycle into the
study of discrete-time fixed-point stability by defining
a surface of section S of dimension n-1. This section
can not be defined parallel to the trajectories. To obtain
the discrete-time system, the continuous-time dynam-
ics is sampled whenever S is crossed with the instant
of the n*" crossing being t.[n], so & = f(x) becomes
xp[n] = z(t;[n]). The Poincaré map is a mapping from
S to itself defined by ,[n + 1] = P(xp[n]).

P is hard to obtain analytically ([Mark W Spong and
Vidyasagar, 2006]), but can be analyzed numerically.
Once the map is obtained, eigenvalues can be inspected
to infer stability. A limit cycle will always have an
eigenvalue of magnitude 1, corresponding to the direc-
tion of perturbation which allows the system to flow
along the orbit and all the others should have a magni-
tude smaller than the unity.

3 Proposed Approach

In spite of the limited scope of the analysis of the re-
quired motion performance presented here, which was
based in key literature references as [Bell, 1998][et al.,
1998b][Levangie and Norkin, 2005], it is clear that the
following requirements have to be considered:

1 Articulation of long time (say, as defined by the
scope of the available a priori or sensed data,
which might well be infinite) and short time hori-
zon ‘optimal’ control strategies in spite of the, pos-
sibly conflicting, goals to be considered in the dif-
ferent time horizons.

2 System’s integrity. The control system should be
designed in such a way that all the constraints to
be satisfied by the various subsystems are satisfied.
These constraints arise from the external environ-
ment due to a priori known features but also due to
perturbations and to the, usually unexpected, asso-
ciated variability. This may lead to control refer-
ences that need to be adjusted on-the-fly”.

3 Scalability in time and space. Scalability is re-
quired not only to deal with complexity and the
heterogeneity of subsystems with very diverse pro-
cess dynamics to be considered, and multiple goals
to be targeted and performance criteria to be op-
timized, but also with the fact that these might
be relevant over different time scales. Modularity



is an important feature enabling this requirement
to be fulfilled. As it has been recognized in the
some of the surveyed literature, for example [et al.,
2009], a multi-stage structure is required to coor-
dinate the various modules in order to ensure local
strategies contributing to common goals.

4 Coordinated decentralization of the decision and
control system. This requirement emerges from
the need to take into account local specific issues
to be addressed by exploiting local degrees of free-
dom, at a given time scale with shared constraints
that arise from the other subsystems and the envi-
ronment. It should enable the organization of the
system in a discrete set of ‘independent’ nodes,
each one acting with partial information but also
coordinating indicators to enable automatic adap-
tation of control references.

5 Adaptivity to take into account trends associated
with environment changes, such as ground mor-
phology and physical properties, and weather con-
ditions. By incorporating the most update percep-
tion provided by the user or the overall system sen-
sors, the optimization underlying the control syn-
thesis will yield results better adjusted to the user
expectations.

6 Robustness of the solution with respect to model-
ing uncertainties and perturbations. Data gather-
ing, sensing and computational limitations as well
as human factors entail the omnipresence of mod-
eling uncertainties and perturbations. This require-
ment is fulfilled by appropriate feedback control
systems designed at subsystem level as well as ap-
propriate choices of targets and performance crite-
ria.

Focussing on the characterization and synthesis of
control strategies, we single out:

— Maximum Principle of Pontryagin, [L. Pontrya-
gin., 1962; Vinter, 2000; et al., 1998a; Arutyunov,
2000; A. Arutyunov, 2011], which yields an open
loop control strategy by maximizing the so-called
Pontryagin function. This involves, an adjoint
function which have the useful interpretation of
propagating back in time the gradient of the cost
functional at the optimum, and can be regarded as
the gradient of the Value Function (the optimum
cost to go) along the optimal trajectory almost ev-
erywhere with respect to time.

— Dynamic programming, [Vinter, 2000], which pro-
vides both a technique for verification of optimal-
ity, as well as, a means for the synthesis of the op-
timal control strategy in a state feedback form.

Any one of these classes of optimal control results
can be used to provide the control synthesis required
in blocks of the above described structure.

Optimal control provides a powerful framework for
formulating control problems. This led to the selection
of a Model Predictive Control (MPC) scheme to the,
whose optimal control foundations are outlined next.

An MPC requires the specification of two slider hori-
zons - one input (or control) horizon and one output (or
prediction) horizon - and tries to predict the future evo-
lution of the system (over the output horizon) to opti-
mize the control signal. This means it solves an optimal
problem for N future iterations at time t and repeats the
optimization at time t + 1 (the next iteration) based on
the new sensors’ measurements.

The control horizon N, is typically 10 times smaller
than the output horizon N,[Bemporad, 2009], which,
despite causing loss of performance, decreases compu-
tation time and allows the feasibility to be kept.

The high level MPC will generate a number of indica-
tors that will translate into targets or constraints to be
satisfied or approximated by the control problems of
the Local Subsystems at the low level for a given finite
time horizon. Remark that the specification of changes
in models, functionals and targets - for example the de-
sired long term equilibrium for the high level - can be
incorporated in optimization processes at both levels of
the structure as a result of the evolution of knowledge
and of the effectiveness of the deployed control strate-
gies. These changes in the formulation of the optimiza-
tion problems can be either event-driven in the case of
disruptive developments, or the result of a periodic re-
view, being the rate at which these changes take place
such that the overall stability of the scheme is main-
tained, and promote the adaptivity requirement of the
overall system. On the other hand, the feedback nature
of the MPC scheme will endow the overall system with
robustness to perturbations.

Essentially, the very basic MPC scheme consists in a
recursive procedure in which, once sampled the state
of the system at the initial time, say ¢ = ¢; and optimal
control problem (Pr) is solved in a given optimization
horizon [t;, T], and then applied during a time subin-
terval [t;,t; + T with T < T. At this point, the state
of the system is sampled, the whole optimization hori-
zon slides of T time units, and the whole process is
repeated.

Remark, that even if the solution to the optimal control
problem is open loop, the periodic sampling of the state
variable together with the computation of the associ-
ated solution to (Pr), ensures the closure of the con-
trol loop to the required extent. If sampling at step (4)
reveals no significant deviations of the sampled state
Z from the expected optimal value x*(¢y + A), then
step (2) can be skipped. Other variations of the scheme
may include the possibility of using the sampled data
to upgrade the estimate of the model dynamics, chang-
ing time horizons as a function of the scope of the data
provided by the system sensors. this information can be
used to change “on the fly” constraint functionals and
sets, and performance functionals. All these elements
might be required to specify the optimal control prob-
lem (Pr), whose simplest formulation can be stated as
follows:



to+T
(Pr) Minimize g(x(T)) +/ I(s,x(s),u(s))ds

to
subject to & = f(t,z,u), a.e.

l’(t) € Xt,
u € U and x(tp) is given,

where f : [to, to+T]x R"x R™ — R" defines the con-
trolled dynamics of the system, g : R" x R™ — Risthe
endpoint cost functional, [ : [tg,to+T] X R™ x R™ —
R is the running cost function, and X; C R", and
U, C R™ are, respectively, the pointwise state and
control constraints. Optimality conditions are currently
available for this problem under substantially weak as-
sumptions on its data.

For further details on the MPC scheme, we point out
[et al., 2000; Fontes, 2001; F. Fontes, 2007; F. Fontes,
2012] and the references therein.

Since one key objective of the proposed resources op-
timization framework is to reconcile long term goals
with short term goals, the MPC scheme proposed to
the high level of the control structure should generate
strategies that asymptotically approximate the solution
to an “I'y,-horizon” optimal control problem that drives
the system to the desirable equilibrium, that is, that
solves a problem of the type

Minimize go.(€) + / T (8, u(t))dt

i

subjectto @ = f(t,x,u) ae.
£ €Cx, lim z(t)=¢
t—Too

u€eU.

The function goo(-) is the term in the performance
functional that forces the system to be driven to the
desired long term equilibrium. In order for the MPC
scheme to yield solutions approximating the ones of the
infinite horizon optimal control problem, the associated
optimization problem (Pr) is defined as follows:

Minimize V' (to+ T, z(to+T))+

totT
/ I(s,x(s),u(s))ds 3)

to
subjectto & = f(t,z,u), u €U, x(to)

where the function V'(-,-) is a value function defined
by

V(r,z):= min

ueU,£€Cx

/l (t,z(t Ndt: e=f(t,x,u), z(1)=z, x(t)—)f}

“4)

Under appropriate assumptions, the value function

can be obtained by solving an Hamilton-Jacobi partial
differential equation

{g(é) +

0 ., 0
aV(t, x) + ggal(%‘/(t, x), f(t,z,u)) =0
V(T,z(T)) = g(z(1)).

For a good reference see [Vinter, 2000]. In general,
a solution to this partial differential equations in the
conventional sense fails to exist, and the type of so-
lution and the notion of derivative that have to be con-
sidered may depend on the ingredients of the problem.
Moreover, the huge difficulties arising in the compu-
tational tractability in solving this equation are well
known (for computational approaches and tools, see
[J. Silva, 2011] and references therein). This consti-
tutes a huge challenge in the current state-of-the-art in
Optimal Control Theory.

In order to investigate an alternative approach to this
problem, necessary conditions of optimality for a class
of infinite horizon optimal control problems appears to
be particularly well suited for the applications consid-
ered here, [F. Pereira, 2011]. Consider the problem

Minimize h(z(0),€)

such that @(t) = ( x(t),u(t)) L —a.e. [0,00)
(0) € z(t) > £ € Cxast — 0

u(t) e C Rm vt € [0, 00),

T

where C(y and C, are compact sets and the remain-
ing ingredients are as above. In spite of the significant
body of literature on this class of problems (see [Ca-
puto, 2005; F. Pereira, 2011] and references therein),
the degenerative effect of very long time horizons still
constitutes a huge challenge. The goal consists in de-
riving a maximum principle exhibiting boundary con-
ditions at the final endpoint with maximal informa-
tion. This should enable the appropriate propagation
of a suitable Value Function from the final time to the
current time. For this purpose, we consider £ € R"
to be an equilibrium point as ¢ — oo, i.e., there ex-
ists a feasible control process (z(-),u(-)) such that
lim z(t) = & and 0 € lim intf(¢, x(¢),§2(¢)), and,
t—o0 t—o0

introduced the notion of directional inclusion at infin-
ity.



Let y(t) € R™, y(t) # 0 ae. in [0,00) and K C
R™ be a pointed cone.We say that y € K directionally
at infinity, ie., y €L K,if Y C K, where K; =
conehull(K') N B1(0) and

ti .
Y:{QGanﬂti%oo lim y(t:) :y}.
i—oo [ly(t:)|l

Below, we will denote by y €., K either y € K or
yed K.

Then, the necessary conditions of optimality in the
form of a maximum principle derived in [F. Pereira,
2011] can be stated as follows:

Let the control process (x*, u*) be a solution to (P,).

Then, there exists a multiplier (A,p) € [0,00) X
AC ([0,00), R™) satisfying, A + [[p(-)|| > 0 (non-
triviality)

[ (t),u (), L£-
p(0) € Adig(z7(0),&") 4+ Ng, (z7(0))
—P € )‘829( ()af*)"i_NC (5*)
u* (t) maximizes v — p (t)f(t,z*(t),v) L

—p"(t) € p"(t)s

4 Use-Cases and Experimental Results

To evaluate the controller behavior, two systems, both
non-linear, were used

— a continuous-time system of dimension 2
— ahybrid system of dimension 4

This allowed us to evaluate scalability and to verify
the consequences of the hybrid character.

Figure 1 shows the response to a square wave, while
figure 2 shows the corresponding control effort.

—

Figure 1. MPC on continuous-time system: small amplitude square

wave reference

—a.e.in Q)

H B

Figure 2. MPC on continuous-time system: large amplitude square
wave reference, perturbation and constraints

As it can be seen, the system is able to keep close track
of the reference signal without response overshoot.

However, such reference signal does not fully show
the usefulness of the MPC, once the system is kept on
the neighborhood of its equilibrium point, unperturbed
and unconstrained. In such conditions any controller
suited for linear systems would behave well. In a sce-
nario were where this conditions don’t apply, the MPC
can still have good performance. Figure 3 shows the
system being forced to move far away from its equilib-
rium point (x=0) and cumulatively facing a perturba-
tion, which occurs at time ¢ = 5s, and while subjected
to a constraint. As it can be seen the system is still able
to closely follow the reference.

Figure 3. MPC on continuous-time system: large amplitude square

wave reference, perturbation and constraints

Moving now to a more complex use-case. The dis-
continuities impose a challenge to the controller, simi-
lar to significant perturbation and issues like sampling
rate/instant become very important. Also the system di-
mension plays a role: the more variables the controller
as to deal with, the harder it is to tune, also due to cou-
pling. If on top of that a perturbation is introduced, the
system may not be able to follow all of references. This
is what figure 4 and figure 5 display: on top are the ref-
erence signals and on the bottom is the output. You
can see that the state variables in blue and magenta are
closely tracked but the others, present bigger error, spe-
cially on the hybrid domain transition moments and at
instant ¢ = 1.85s where a perturbation occurs.



Figure 4. MPC on hybrid system : reference signals

Figure 5. MPC on hybrid system: output signals with disturbances

5 Conclusion

This paper reports the study of a Model Predictive
Controller has a strategy to control Nonlinear and Hy-
brid systems. Designing a controller for target systems
is challenging, specially for systems of higher dimen-
sion and where discrete events, such as ground impacts,
which are intrinsic to legged locomotion and whose dy-
namics must also be taken into account, are frequent.

The results show that optimal control techniques are
very powerful, but also nontrivial and sensitive to prac-
tical issues such as choices regarding tunning and com-
putational time and power requirements, particularly in
case of higher system complexity and if discrete transi-
tions occur.

As future work, it will be explored the combination of
different techniques that can enhance the controller’s
performance.
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