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Abstract: The error-feedback servomechanism problem is addressed for a general
class of strict-feedback-like systems. The design is based on our recent results
on adaptive output-feedback based on dynamic dual high-gain scaling. The
design technique provides strong robustness properties and allows the system to
contain both unknown functions dependent on all states and uncertain parameters
coupled with all states (with no a priori magnitude bounds required on uncertain
parameters).
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1. INTRODUCTION

The class of systems considered are of the form:

ẋ1 = φ1(̟,x1) + φ(1,2)(x1)x2

ẋ2 = φ2(̟,x1, x2) + φ(2,3)(x1)x3

.

.

.

ẋi = φi(̟,x1, x2, . . . , xi) + φ(i,i+1)(x1)xi+1

.

.

.

ẋn = φn(̟,x1, x2, . . . , xn) + u

x̃1 = x1 − ψ(̟) (1)

where 2 x̃1 ∈ R is the tracking error which con-
stitutes the only measurable signal available for
feedback, ̟ ∈ Rn̟ is the reference (or distur-
bance) input, x = [x1, . . . , xn]T ∈ Rn is the state,
and u ∈ R the input. φ(i,i+1) : R → R, i =
1, . . . , n − 1 are known continuous functions of
their arguments. φi : Ri → R, i = 1, . . . , n, are
uncertain continuous functions which can contain

1 This work is supported in part by the NSF under grant
ECS-0501539.
2 The set of real numbers (−∞,∞), the set of nonnegative
real numbers [0,∞), and the set of real k-dimensional col-
umn vectors are denoted by R, R+, and Rk, respectively.

both functional and parametric uncertainties. ̟
is assumed to be produced by a neutrally stable
(i.e., all eigenvalues of S simple and lying on the
imaginary axis) exosystem of form

˙̟ = S̟. (2)

The error-feedback control design in this paper
is based on the adaptive dual high-gain based
output-feedback control design technique pro-
posed in our recent paper (Krishnamurthy and
Khorrami, 2006) for systems of the form

ẋi = φi(x1, . . . , xi) + φ(i,i+1)(x1)xi+1 , i = 1, . . . , n− 1

ẋn = φn(x1, . . . , xn) + u

y = x1 (3)

where y ∈ R is the measured output. The required
bounds on φi, i = 1, . . . , n, (Assumption A2
in (Krishnamurthy and Khorrami, 2006)) allow
cross-products of unknown parameters and un-
measured states with no magnitude bound or sign
information on the unknown parameters being
required. While earlier control design techniques
such as the classical high-gain designs (Khalil and
Saberi, 1987; Teel and Praly, 1994; Khalil, 1996;
Ilchmann, 1996) and backstepping (Krstić et al.,
1995) cannot handle cross-products of unknown



parameters and unmeasured states, the dynamic
scaling-based dual high-gain observer/controller
design approach developed in our recent papers
(Krishnamurthy and Khorrami, 2002; Krishna-
murthy and Khorrami, 2004; Krishnamurthy and
Khorrami, 2006) provides a flexible framework
which can accomodate such cross-products.

High gain as a technique for controller and ob-
server designs has been investigated extensively in
the literature. The well-known adaptive high-gain
controller given in its basic form by u = −ry, ṙ =
y2 is applicable to minimum-phase systems with
relative-degree one (Khalil and Saberi, 1987; Ilch-
mann, 1996). Static high-gain scaling based ob-
servers (Teel and Praly, 1994; Khalil, 1996) which
introduce observer gains r, . . . , rn with a constant
r provide semiglobal solutions. In (Praly, 2003),
a high-gain observer and a backstepping con-
troller were designed for systems of form (3) with
φ(i,i+1) = 1, i = 1, . . . , n − 1, and with φi, i =
1, . . . , n, being known functions of x1, . . . , xi in-
crementally linear in unmeasured states in the
sense that |φi(x1, . . . , xi) − φi(x1, x̂2, . . . , x̂i)| ≤

Γ(x1)
∑i

j=2 |x̂j − xj | with Γ(x1) being a known
function.

A dual high-gain observer/controller design ap-
proach was introduced in (Krishnamurthy and
Khorrami, 2002; Krishnamurthy and Khorrami,
2004) based on the solution of a pair of cou-
pled Lyapunov inequalities which were shown to
be always solvable under a cascading dominance
assumption on the upper diagonal terms φ(i,i+1)

(Krishnamurthy et al., 2003; Krishnamurthy and
Khorrami, 2004) which is closely linked to the
Cascading Upper Diagonal Dominance (CUDD)
condition introduced in (Krishnamurthy et al.,
2002). In (Krishnamurthy and Khorrami, 2004),
the functions φi, i = 1, . . . , n, were allowed to
contain functional and parametric uncertainties
coupled with all the states. It was seen that
a complexity of bounds on the uncertain terms
φi does not result in complexity of the con-
troller, observer, or Lyapunov function, but is
instead handled through the dynamics of the high-
gain scaling. However, (Krishnamurthy and Khor-
rami, 2004) required a magnitude bound on the
uncertain parameters in the system. The require-
ment of a magnitude bound on unknown param-
eters was removed in (Krishnamurthy and Khor-
rami, 2005) using a time-varying dynamics of the
high-gain scaling parameter with the basic idea
being to asymptotically (as t → ∞) guarantee
sufficient gain to dominate the unknown parame-
ters while retaining closed-loop stability. This pro-
vided the first output-feedback globally asymptot-
ically stabilizing solution to the following bench-
mark open problem proposed in our earlier papers
(Krishnamurthy and Khorrami, 2003; Krishna-
murthy and Khorrami, 2004)

ẋ1 = x2 ; ẋ2 = x3 ; ẋ3 = u+ θ0x
2
1x3 (4)

with u being the input, y = x1 the output, and
θ0 an uncertain parameter of unknown sign and
with no available magnitude bounds. System (4)
is of a very simple form with a single nonlinearity

and a single unknown parameter. If any of the
components of θ0x

2
1x3 are dropped, the solution

can be obtained using available techniques. If θ0
is known, (Praly and Kanellakopoulos, 2000) and
(Krishnamurthy et al., 2003) provide controllers
of dynamic orders 9 and 3, respectively. If x2

1 is
removed, the system is linear. If x3 is removed,
the system is in standard output-feedback canon-
ical form (Marino and Toméi, 1993; Krstić et
al., 1995). If a magnitude bound on θ0 is avail-
able, a solution is provided by (Krishnamurthy
and Khorrami, 2004). However, with θ0 com-
pletely unknown, no output-feedback control de-
sign technique prior to (Krishnamurthy and Khor-
rami, 2005) can globally asymptotically stabilize
the system.

A time-invariant dynamic controller based on a
factorization of the scaling parameter r into two
dynamic scaling parameters as r = LM was re-
cently introduced in (Lei and Lin, 2005) for a
subclass of systems of form (3) with all the upper
diagonal terms φ(i,i+1), i = 1, . . . , n − 1, required
to be identically equal to 1 and with the out-
put dependence of the unknown functions φi, i =
1, . . . , n, required to be polynomially bounded.
In (Krishnamurthy and Khorrami, 2006), it was
shown that the time varying component of the
scaling parameter dynamics in (Krishnamurthy
and Khorrami, 2005) can be eliminated without
requiring the restrictions on φ(i,i+1), i = 1, . . . , n−
1, and φi, i = 1, . . . , n, introduced in (Lei and
Lin, 2005), thus providing an autonomous dy-
namic controller for systems of form (3) with
the full generality of (Krishnamurthy and Khor-
rami, 2005) in terms of assumptions on system
terms. In this paper, the design technique from
(Krishnamurthy and Khorrami, 2006) is applied
to the servomechanism problem yielding servo-
compensator design results for a wider class of
systems than in prior results available in the liter-
ature (Davison, 1976; Francis and Wonham, 1976;
Isidori and Byrnes, 1990; Priscoli, 1993; Huang
and Chen, 2004).

The rest of the paper is organized as follows. The
coordinate transformation of the system (1) so
that the system in the error coordinates is of the
form (3) is presented in Section 2 and satisfies as-
sumptions analogous to those in (Krishnamurthy
and Khorrami, 2006). The error-feedback control
design is developed in Section 3. The extension of
the design to systems with Input-to-State Stable
(ISS) appended dynamics and inverse dynamics is
briefly outlined in Section 4.

2. TRANSFORMATION INTO ERROR
COORDINATES

The main assumption to ensure that the system
(1) can be transformed in error coordinates into
a system of form (3) is given by Assumption AT1
below:



Assumption AT1: Sufficiently smooth (possibly
uncertain) functions x1(̟), . . . , xn(̟), and u(̟)
exist such that for all ̟ ∈ Rn̟ ,

x1(̟) = ψ(̟) (5)

x2(̟) =
1

φ(1,2)(ψ(̟))

[

∂x1(̟)

∂̟
S̟

−φ1(̟,ψ(̟))

]

(6)

xi(̟) =
1

φ(i−1,i)(ψ(̟))

[

∂xi−1(̟)

∂̟
S̟

−φi−1(̟,ψ(̟), x2(̟), . . . , xi−1(̟))

]

, i = 3, . . . , n (7)

u(̟) =
∂xn(̟)

∂̟
S̟

−φn(̟,ψ(̟), x2(̟), . . . , xn(̟)) (8)

To construct an internal model, the following tech-
nical assumption is also needed.

Assumption AT2: A positive integer nu and
constants a0, . . . , anu−1 exist such that

L
nu

S̟
u(̟) = a0u(̟) + a1LS̟u(̟)

+ . . .+ anu−1L
nu−1
S̟

u(̟).

Under Assumption AT2, it can be seen that the
exosystem with output u(̟) can be immersed into
the system

χ̇u(̟) =
∂χu(̟)

∂̟
S̟ = Auχu(̟)

u(̟) = Cuχu(̟) (9)

where Au is the nu × nu matrix with 1’s on the
upper diagonal and [a0, . . . , anu−1] as the last
row and Cu = [1, 0, . . . , 0]. Since (Au, Cu) form
an observable pair, an internal model can be
constructed as an observer for the linear system
(9) to be

ẋu = Gxu +Hu(̟) (10)

where G is a Rnu×nu Hurwitz matrix, H is an
nu-dimensional column vector, and (G,H) is a
controllable pair. From the unique nonsingular
solution T ∈ Rnu×nu of the Sylvester equation
TAu − GT = HCu, the estimate for χu is con-
structed as T−1xu. Since G is a Hurwitz matrix,
a symmetric positive-definite matrix PG can be
found such that

PGG+GTPG ≤ −Inu (11)

where Ik denotes an identity matrix of dimension
k × k. Replacing u(̟) with u in (10), the imple-
mentable observer (or internal model)

ẋu = Gxu +Hu (12)

is obtained where xu is an estimate for (xu+Hx̃n).
Also, CuT

−1xu serves as an estimate of u(̟). The
observer error of the internal model is defined as

x̃u = xu − (xu +Hx̃n). (13)

The dynamics of x̃u is given by

˙̃xu = Gx̃u +GHx̃n −Hφ̃n. (14)

Defining the coordinate transformation,

x̃i = xi − xi(̟) , i = 2, . . . , n (15)

x̃ = [x̃1, . . . , x̃n]T (16)

ũ = u− u(̟) (17)

it is seen that in the error coordinates (z̃, x̃), the
system (1) can be written in the form

˙̃xi = φ̃i(̟, x̃1, . . . , x̃i) + φ(i,i+1)(x̃1)x̃i+1, i = 1, . . . , n− 1

˙̃xn = φ̃n(̟, x̃1, . . . , x̃n) + ũ

y = x̃1 (18)

The output-feedback control design (using output
y) for system (18) is addressed in Section 3.

3. OUTPUT-FEEDBACK CONTROL DESIGN
FOR THE ERROR SYSTEM

The assumptions required on the system (18) are
given by Assumptions A1-A3 below which are
analogous to the assumptions in (Krishnamurthy
and Khorrami, 2006).

Assumption A1: System (18) is observable and
controllable, i.e., a constant σ > 0 exists such that
for all x̃1 ∈ R, |φ(i,i+1)(x̃1)| ≥ σ , 1 ≤ i ≤n− 1.

Assumption A2: A continuous function Γ : R →
R+ is known such that

|φi(x̃1, . . . , x̃i)| ≤ θΓ(x̃1)

i
∑

j=1

|x̃j | , 1 ≤ i ≤ n (19)

for all x̃ = [x̃1, . . . , x̃n] ∈ Rn with θ ≥ 0 being
an unknown parameter (with no knowledge of
magnitude bounds required).

Assumption A3: Positive constants ρi and ρ
i

exist such that for all x̃1 ∈ R

|φ(i,i+1)(x̃1)| ≥ ρi|φ(i−1,i)(x̃1)|, i = 2, . . . , n− 1 (20)

|φ(i,i+1)(x̃1)| ≤ ρ
i
|φ(i−1,i)(x̃1)|, i = 2, . . . , n− 1. (21)

Remark 1: Assumption A3 requires ratios of the
“upper-diagonal” terms φ(i,i+1) to be bounded.
The condition (20) requires the upper-diagonal
terms closer to the input to be larger (in a
nonlinear function sense) while condition (21)
requires the upper-diagonal terms closer to the
output to be larger. The conditions (20) and
(21) constitute the cascading dominance assump-
tions (Krishnamurthy et al., 2002) in the con-
troller context and observer context, respectively,
and are related to uniform solvability of cou-
pled Lyapunov inequalities (Krishnamurthy et
al., 2003; Krishnamurthy and Khorrami, 2004)
which are instrumental in the design of con-
troller and observer gains in a dual dynamic
high-gain design. Using Theorems A1 and A2 in
(Krishnamurthy and Khorrami, 2004), the condi-
tions on φ(i,i+1) in Assumptions A1 and A3 are
necessary and sufficient for the existence of func-
tions g1(x̃1), . . . , gn(x̃1), k2(x̃1), . . . , kn(x̃1), sym-
metric positive-definite matrices Po and Pc, and
positive constants νo, νo, νo, νc, νc, and νc to
satisfy for all x̃1 ∈ R

PoAo(x̃1) +AT
o (x̃1)Po ≤ −νo|φ(1,2)(x̃1)|In

νoIn ≤ Po(Do −
1

2
In) + (Do −

1

2
In)Po ≤ νoIn

}

(22)

PcAc(x̃1) +AT
c (x̃1)Pc ≤ −νc|φ(2,3)(x̃1)|In−1

νcIn−1≤Pc(Dc−
1

2
In−1)+(Dc−

1

2
In−1)Pc≤νcIn−1

}

(23)



where

Ao=











−g1 φ(1,2) 0 0 . . .

−g2 0 φ(2,3) 0 . . .

.

..
. . .

−gn−1 φ(n−1,n)

−gn 0 . . . 0











(24)

Ac=











0 φ(2,3) 0 0 . . .

0 0 φ(3,4) 0 . . .

..

.
. . .

0 φ(n−1,n)

−k2 −k3 . . . −kn











(25)

C=[1, 0, . . . , 0] (26)

Do=diag(1, 1, 2, 3, . . . , n− 1) (27)

Dc=diag(1, 2, 3, . . . , n− 1), (28)

and diag(a1, . . . , ak) denotes the k × k diagonal
matrix with the ith diagonal element being ai.

Furthermore, by Theorem A1 in (Krishnamurthy
and Khorrami, 2004), g1(x̃1), . . . , gn(x̃1) can be
picked to be linear constant-coefficient combina-
tions of φ(1,2)(x̃1), . . . , φ(n−1,n)(x̃1). Hence, using

Assumption A3, a positive constant G exists such
that

√

√

√

√

n
∑

i=1

g2
i
(x̃1) ≤ G|φ(1,2)(x̃1)|. (29)

The main result of the paper is summarized in
Theorem 1.

Theorem 1: Under Assumptions AT1, AT2, A1,
A2, and A3, positive constants a and b and con-
tinuous functions ζ : R2 → R, Θ1 : R → R+,
Θ2 : R2 → R+, γ : R3 → R+, gi : R →
R, i = 1, . . . , n, and ki : R → R, i = 2, . . . , n
can be chosen such that all solution trajectories
of the closed-loop system formed by the dynamic
controller given by

˙̂x1 =φ(1,2)(x̃1)x̂2 −
ṙ

r
(x̂1−x̃1)−rg1(x̃1)[x̂1−x̃1]

˙̂xi =φ(i,i+1)(x̃1)x̂i+1

−rigi(x̃1)[x̂1 − x̃1] , i = 2, . . . , n− 1
˙̂xn =µ0(x̃1)[u− CuT

−1xu] − rngn(x̃1)[x̂1 − x̃1]















(30)

u = −rn

n
∑

i=2

ki(x̃1)ηi + CuT
−1xu (31)

η2 =
x̂2 + ζ(x̃1, θ̂)

r
; ηi =

x̂i

ri−1
, i = 3, . . . , n (32)

ṙ = r[−a(r − 1) + bγ(x̃1, x̂1, θ̂)] ; r(0) ≥ 1 (33)

˙̂
θ = Θ1(x̃1)x2

1 + Θ2(x̃1, r)(x̂1 − x̃1)2 ; θ̂(0) > 0, (34)

in closed loop with the internal model (12) and
the system (1) starting from any initial condition

(x(0), x̂(0), r(0), θ̂(0), xu(0)) ∈ Rn×Rn× [1,∞)×
(0,∞) × Rnu where x̂ = [x̂1, . . . , x̂n]T have the
following properties:

• Solution trajectories exist on the time in-
terval [0,∞) and all closed-loop signals are
bounded on [0,∞).

• The tracking error x̃1 = x1−ψ(̟(t)) asymp-
totically converges to zero as t→ ∞.

Observer Design: A full-order observer for system
(18) is given by (30) where r is the dynamic
high-gain scaling parameter and g1, . . . , gn are

functions chosen as in Remark 1. The observer
errors ei and scaled observer errors ǫi are defined
as

ei = x̂i − x̃i ; ǫi =
ei

ri−1
, 1 ≤ i ≤ n. (35)

From (35), ǫ1 = e1. The dynamics of the scaled
observer error vector ǫ = [ǫ1, . . . , ǫn]T are given
by

ǫ̇ = rAoǫ−
ṙ

r
Doǫ− Φ +B

1

rn−1
[u(̟) − CuT

−1xu] (36)

Φ = [Φ1, . . . ,Φn]T , Φi =
φi

ri−1
(37)

where Ao and Do are defined in (24) and (27),
respectively. The term − ṙ

r
e1 introduced in the

dynamics of x̂1 in (30) contributes a value of 1 to
the (1, 1) element ofDo thus ensuring the positive-
definiteness of the matrix (Do − 1

2In). This is
crucial to the solvability of the second Lyapunov
inequality in (22).

Controller Design: The control law is given by

(31) where the term CuT
−1xu is used as an

estimate of u(̟). The controller gain func-
tions k2, . . . , kn are chosen as in Remark 1 and
η2, . . . , ηn are given by (32). The design function

ζ is picked to be of the form ζ(x̃1, θ̂) = (1 +

θ̂)x̃1ζ1(x̃1) with ζ1 being a continuously differen-

tiable function and θ̂ a parameter estimator. The
signals ηi, i = 2, . . . , n, are scaled observer esti-
mates of the states x̃i with an additional design
freedom ζ incorporated into η2. The dynamics of
η = [η2, . . . , ηn]T are

η̇ = rAcη −
ṙ

r
Dcη − rG2ǫ1 +H(η2 − ǫ2) + Ξ (38)

where

G2 = [g2, . . . , gn]T (39)

H =

[

(1 + θ̂)

{

ζ′1x̃1 + ζ1

}

φ(1,2), 0, . . . , 0

]T

(40)

Ξ =
1

r

[

˙̂
θζ1x̃1 + (1+θ̂)

{

ζ′1x̃1+ζ1

}

×

{

φ1 − (1 + θ̂)ζ1x̃1φ(1,2)

}

, 0, . . . , 0

]T

, (41)

Ac and Dc are as defined in (25) and (28), respec-
tively, and ζ ′1(x̃1) denotes the partial derivative
evaluated at x̃1 of ζ1 with respect to its argument.

Stability Analysis: To analyze closed-loop stabil-
ity, the observer and controller Lyapunov func-
tions are defined as

Vo = rǫTPoǫ ; Vc = rηTPcη +
β1

2
x̃2
1 (42)

where β1 is a positive constant free to be picked by
the designer. Differentiating Vo and Vc and using
(36) and (38),

V̇o = r2ǫT [PoAo +AT
o Po]ǫ− 2rǫTPoΦ

−ṙǫT
[

Po(Do −
1

2
In) + (Do −

1

2
In)Po

]

ǫ

+2rǫTPoB
1

rn−1
[u(̟) − CuT

−1xu] (43)

V̇c = r2ηT [PcAc +AT
c Pc]η

−ṙηT

[

Pc(Dc −
1

2
In−1) + (Dc −

1

2
In−1)Pc

]

η

−2r2ηTPcG2ǫ1 + 2rηTPcH(η2 − ǫ2) + 2rηTPcΞ

+β1x̃1[φ1 + (rη2 − rǫ2 − ζ)φ(1,2)]. (44)



A Lyapunov function for the observer error of the
internal model (12) is introduced as

Vx̃u
=

1

r2n−3
x̃T

uPGx̃u. (45)

Using (11) and (14), the derivative of Vx̃u
is given

by

V̇x̃u
≤ −(2n− 3)

ṙ

r2n−2
x̃T

uPGx̃u −
1

r2n−3
|x̃u|

2

+
2

r2n−3
x̃T

uPG[GHx̃n −Hφ̃n]. (46)

Closed-loop stability is analyzed using the Lya-
punov function

V = cVo + Vc + Vx̃u
(47)

with c being a design parameter picked such that

c ≥ 8
νoνcρ

2

λ2
max(Pc)G

2
where λmax(P ) denotes

the maximum eigenvalue of a symmetric positive-
definite matrix P . Using algebraic manipulations
along the same lines as in (Krishnamurthy and
Khorrami, 2006), the details of which are omitted
here for brevity, the Lyapunov inequality

V̇ ≤ −
cνo

4
r2|φ(1,2)||ǫ|

2 −
νc

2
r2|φ(2,3)||η|

2 − β1x̃1φ(1,2)ζ

−(2n− 3)
ṙ

r2n−2
x̃T

uPGx̃u −
1

2r2n−3
|x̃u|

2

+[q1(x̃1) + θ∗q2(x̃1)]x̃2
1

−cṙǫT
[

Po(Do −
1

2
In) + (Do −

1

2
In)Po

]

ǫ

−ṙηT

[

Pc(Dc −
1

2
In−1) + (Dc −

1

2
In−1)Pc

]

η

+r[w1(x̃1, θ̂,
˙̂
θ) + θ∗w2(x̃1, θ̂)]{|ǫ|

2 + |η|2} (48)

can be obtained where θ∗
△
= max{1, θ + θ2}, and

q1, q2, w1, and w2 are continuous functions of the
indicated arguments.

Picking b to be an arbitrary positive constant,
choose a > 0 small enough to ensure that

max

(

−
σcνo

4
+ acνo,−

σνc

2
+ aνc,

−
1

2
+ a(2n− 3)λmax(PG)

)

= −a∗ < 0, (49)

and choose ζ1(x̃1) such that

−β1ζ1(x̃1)φ(1,2)(x̃1) + q1(x̃1) + q2(x̃1) ≤ −ζ∗1 (x̃1)(50)

with ζ∗1 being a positive function of x̃1 bounded
below by a positive constant ζ∗

1
. The parameter es-

timator dynamics are chosen as shown in (34) with
Θ1(x̃1) = 1

βθ
q2(x̃1) and Θ2(x̃1, r) = 1

βθ
r2φ2

(1,2)

where βθ > 0 is a design parameter. Note that

the parameter estimate θ̂(t) with dynamics (34)
is a monotonically nondecreasing function of time.
The design function γ is picked to be

γ(x̃1, x̂1, θ̂) =
1

bmin(cνo, νc)

×

[

w1

(

x̃1, θ̂,Θ1(x̃1)x̃2
1 + Θ2(x̃1, r)(x̂1 − x̃1)2

)

+
1

β3
w2

2(x̃1, θ̂)(1 + x̃2
1) + θ̂ + β4

]

(51)

with β4 being a design parameter which can be
picked to be any positive constant. Using (33),
(49), (50) and (51), (48) reduces to

V̇ ≤ −a∗r2
[

|ǫ|2 + ||η|2 +
|x̃u|2

r2n−1

]

− x̃2
1ζ

∗

1 (x̃1)

+(θ∗ − θ̂)q2(x̃1)x̃2
1 + r

{

θ∗w2(x̃1, θ̂)

−
1

β3
w2

2(x̃1, θ̂)(1 + x̃2
1) − θ̂ − β4

}

× [|ǫ|2 + |η|2].(52)

The parameter estimation error is defined to be

(θ̂ − θ) with θ
△
= max{θ∗, β3

4 θ
∗
2

}. Note that

θ ≥ 1 since θ∗ was defined as max{1, θ + θ2}.
A new Lyapunov function is defined including a

quadratic of the parameter estimation error (θ̂−θ)

as V = V + βθ

2 (θ̂ − θ)2. Using (52),

˙
V ≤ −a∗r2

[

|ǫ|2 + ||η|2 +
|x̃u|2

r2n−1

]

− x̃2
1ζ

∗

1 (x̃1)

+(θ̂ − θ)r2φ2
(1,2)[x̂1 − x̃1]2

+r

{

θ∗w2(x̃1, θ̂) −
1

β3
w2

2(x̃1, θ̂)(1 + x̃2
1) − θ̂ − β4

}

×[|ǫ|2 + |η|2]. (53)

Local existence of solutions is guaranteed by the
assumptions on the functions φi and φ(i,i+1). Let
the maximal interval of existence of solutions be
[0, tf ). The proof of Theorem 1 utilizes Lemmas 1-
4 given below to infer that tf = ∞ (i.e., solutions
exist for all time) and that in the limit as t→ ∞,
the signals x̃1, . . . , x̃n, ẽ1, . . . , ẽn, x̃u, converge to
zero. The Lemmas 1-4 can be proved along similar
lines as in (Krishnamurthy and Khorrami, 2006)
and the details are omitted here for brevity.

Lemma 1: If supt∈[0,tf ) V (t) <∞ and

supt∈[0,tf ) θ̂(t) <∞, then supt∈[0,tf ) r(t) <∞.

Lemma 2: If supt∈[0,tf ) θ̂(t) > θ, then tf =

∞, limt→∞ V (t) = 0,
∫ ∞

0
V (t)dt < ∞, and

supt∈[0,∞) θ̂(t) <∞.

Lemma 3: If supt∈[0,tf ) θ̂(t) ≤ θ, then

supt∈[0,tf ) V (t) <∞, and
∫ tf

0
V (t) <∞.

Lemma 4: If supt∈[0,tf ) θ̂(t) ≤ θ, then tf = ∞

and limt→∞ V (t) = 0.

Proof of Theorem 1: With the maximal interval
of existence of solutions denoted by [0, tf ), one of
the following possibilities should hold: Case A1:

supt∈[0,tf ) θ̂(t) ≤ θ; Case A2: supt∈[0,tf ) θ̂(t) >

θ. If Case A2 holds, then Lemma 2 guarantees
that tf = ∞. On the other hand, under Case
A1, Lemma 4 implies that tf = ∞. Hence, the
possibility of finite escape time is ruled out, i.e.,
tf = ∞. Furthermore, from Lemmas 2-4, it is
seen that supt∈[0,∞) V (t) < ∞,

∫ ∞

0
V (t)dt < ∞,

supt∈[0,∞) θ̂(t) < ∞, and limt→∞ V (t) = 0. Also,
it can be shown that the boundedness of all closed-
loop signals on the time interval [0,∞) follows

from the boundedness of θ̂(t), V (t), and
∫ t

0
V (τ)dτ

on t ∈ [0,∞). The asymptotic convergence of
V (t) to zero as t → ∞ implies the asymptotic
convergence of the signals x̃1, . . . , x̃n, ẽ1, . . . , ẽn,
x̃u to zero as t → ∞, thus completing the proof
of Theorem 1. ⋄



4. EXTENSION TO SYSTEMS WITH ISS
APPENDED DYNAMICS

The error-feedback control design technique pre-
sented in this paper can be extended to the more
general class of systems

żi = qi(̟, z, x) , i = 1, . . . , n

ẋi = φi(̟, z, x, u) + φ(i,i+1)(x1)xi+1 , i = 1, . . . , s− 1

ẋi = φi(̟, z, x, u) + φ(i,i+1)(x1)xi+1

+µi−s(x1)u , i = s, . . . , n

x̃1 = x1 − ψ(̟) (54)

where zi ∈ Rnzi are the (unmeasurable) states
of appended ISS dynamics(Sontag, 1995) and
z = [zT

1 , . . . , z
T
n ]T . s is the relative degree of the

system and [xs+1, . . . , xn]T is the state of the
inverse dynamics. The appended dynamics are
driven by all the system states with a triangular
structure of ISS interconnections. While previous
techniques (Praly and Jiang, 1993) required ISS
dynamics and inverse dynamics to be driven only
by x1, (Krishnamurthy and Khorrami, 2004) pro-
vided an output-feedback control method using
the dynamic high-gain scaling approach to han-
dle ISS appended dynamics and inverse dynam-
ics driven by all the system states. The design
in (Krishnamurthy and Khorrami, 2004) utilized
dynamics of the high-gain scaling parameter of

the form ṙ = λ(R(x1, θ̂,
˙̂
θ) − r)Ω(r, x1, θ̂,

˙̂
θ) with

R, λ, and Ω being suitably chosen functions. The
Lyapunov function in (Krishnamurthy and Khor-
rami, 2004) incorporates appropriately scaled ver-
sions of the ISS Lyapunov functions of the inverse
dynamics and the appended dynamics. By us-
ing the techniques in (Krishnamurthy and Khor-
rami, 2004; Krishnamurthy and Khorrami, 2006)
and the servocompensator design technique in this
paper, the proposed error-feedback controller can
be extended to systems of form (54). The details
are omitted here for brevity.
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