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Abstract: The statement of problem of optimization of sensors system in the control system of the elastic 
aerospace vehicle under condition of the stochastic system control design on the base of quadratic 
performance index is considered. The desired control system is the linear-quadratic-Gaussian (LQG) 
regulator which consists from the steady-state Kalman estimator and the optimal state-feedback gain. The 
LQG regulator minimizes some quadratic cost function that trades off regulation performance and control 
effort. This regulator is dynamic and relies on noisy output measurements to generate the control. 
Magnitudes of time-average values of quadratic performance indexes and maximum feasible values of 
dispersion of estimation of state vector are considered as linear matrix-inequalities-restrictions in the 
sensor system optimization problem on the base of minimization of offered goal function related with the 
number, type and accuracy of sensors. The uniqueness of the solution and high performance of the 
suggested method are typical for the convex programming problems. 

Keywords: measurement optimization, flight control design, flexible vehicle, linear matrix inequalities 

 

1. INTRODUCTION 

Presently in the statement of stochastic dynamic systems 
optimal control problem the number, structure and 
disposition of sensors as a rule are considered as the set-up 
parameters of the measurements model. The solution of the 
problem is parameters and structure of the state-vector 
observer and the regulator (the control law), satisfying to the 
defined criteria of transient process (the optimal trajectory of 
motion). It is supposed to expand the statement of the 
problem of the stochastic dynamic system control law 
synthesis, considering these specified parameters of 
measurements model as unknown variables. 

The flexible aerospace vehicle control is connected with the 
estimation of motion parameters and structural deformations 
of the construction. Usually, the requirements for these 
parameters changing dynamics define statements of 
stabilization and tracking control problems and can be 
presented in the form of the set of criteria which 
minimization leads to the solution of the problem of control 
system synthesis. Independently of it, the problem of the 
state-space vector estimation with taking into account the 
aprioristic information about stochastic properties of external 
disturbances and errors of measurements is solved. 

As a result the parameters of the measuring system, defined 
by the set of gauges and their arrangement, have an effect on 
accuracy of the control problem solution; in the extreme case 
the observability of some components of the state-space 
vector defines an opportunity of the control problem solution. 
In particular the position of sensors determines influence of 

elastic oscillations on the measured parameters of motion of 
the vehicle as a solid body. Parameters of this dependence are 
determined by values of the shapes of own elastic oscillations 
in the points of sensors locations. The effective analytical 
approach for the optimal choice of number of gauges, their 
type and positioning on the basis of linear matrix inequalities 
method is considered in this article. 

2. PLANT MODEL 

2.1. Accountable effects 

State-space model of aeroelastic vehicle includes the dynamic 
equations of solid body motions, models of flexible relative 
displacements of construction, actuators dynamics from one 
side and from other side the cross relations defined by 
aerodynamic and trust forces and closed loop feedback 
control. Such effects as sloshing, stochastic models of non-
stationary aerodynamic forces may be included also. 

2.2. Elasticity equations 

Discrete form of flexible forced oscillations in node 
displacements q at body axes frame is next 

,fqqqM Δ=+ΔΞ+Δ &&&  (1) 

where M  is diagonal mass matrix of lumped masses mi , Δ  
is the inverse stiffness symmetrical matrix and Ξ  is damping 
symmetrical matrix, f is vector of lumped loads in each node. 
Matrix Δ  is calculated with tacking to account free 



 
 

 

boundaries and dynamic equilibrium conditions. It implies 
that the matrix Δ  is singular, and pair of singular values 
corresponds to linear displacement and rotation of vehicle as 
solid body. In other words, the stiffness matrix ignores the 
part of distributed loads which do not cause the deformation. 
The solution of homogeneous ordinary differential equation 

,Δ 0qqM =+&&  (2) 

without damping 0=Ξ , corresponds to free oscillations with 
natural frequencies iω , and mass normalized shapes 
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jiΦ= , as columns of matrix Φ in the next eigenvalue 
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The dimension of equation is defined by the number of node 
points. The displacements of forced flexible oscillations can 
be represented as linear combination of shapes of free 
oscillations. The components of vector ξ  are known as 
modes of flexible oscillations (generalized coordinates). 

Φξ=q . (5) 

Appropriate form of flexible forced oscillations in flexible 
modes is next 

fMM ΦΦξΦΩξΞΦΦξΦΦ 2 ′=′+′+′ &&& . (6) 

The diagonal elements iM  of ΦΦM′  are known as general 
masses and the components of vector fΦ′ are known as 
general forces. In common case the matrix of general masses 
is diagonal, but for mass-normalized shapes (3) it is an 
identity matrix. 

Theoretically the number of modes is equal to the number of 
local masses. Practically it is possible to decrease dimension 
of equation by eliminating the non-dominant harmonics. If 
one eliminates corresponding components of q  and columns 
of matrixΦ , one obtains the reduced equation. 

For analogy with pendulum equation the transformed 
damping matrix is approximately assumed as diagonal with 
elements equal to 

)(2ΞΦΦ iiiMdiag ωζ=′ . (7) 

2.3. Aeroservoelasticity 

Rigid body model of vehicle and model of elasticity are 
interconnected via distributed aerodynamic forces, which 
depend on parameters of body motion and local angle of 
attack at i nodes. For mathematical simplicity the so-called 
strip theory as a first approximation is used. In this theory it 
is assumed that the local force is proportional to the local 
angle of attack. 

The lumped loads f  include aerodynamic and thrust forces, 
applied to points of body in various directions. These forces 
depend from flexible displacements of construction and 
control law u, which defines value and direction of thrust and 

positions of aerodynamic control surfaces. The total forces 
and moment are formed from lumped loads. 

2.4. LTI model 

State-space model of object with consideration of all factors 
may be created by applying linearization procedure to system 
of all nonlinear and time-varying equations about points of 
calculated base trajectory. Approximately one can separate 
the motion of object to translation and rotation and research 
motion in one plane. For simplicity let us investigate the 
longitudinal motion of vehicle in pitch channel and use beam 
flexibility model of bending oscillations. It is reasonable to 
use minimal realization of system where all uncontrollable or 
unobservable modes have been removed. 

State-space model of aeroservoelastic object may be 
represented in the following matrix form: 

wBuAxx ++=& , (8) 
vuDxCy ++= , (9) 

where )ξ,( scol xx =  is a state vector includes the solid body 
and actuators state parameters sx and modes of oscillations 
ξ . The input of system contains deterministic control u, 
process noise w and measurement noise v. The output of 
system is measurement vector y. 

The matrix Anxn is called the dynamic coefficient matrix, and 
Bnxm is the input coupling matrix. The matrix Ckxn is the 
measurement sensitivity matrix, and Dkxm is the input-output 
coupling matrix. 

3. MEASUREMENTS, ESTIMATION AND CONTROL 

3.1. Shapes based model of measurements 

The output of sensors, measuring linear or angle parameters 
of motion, includes matched parameters of flexible 
displacements. Influence of oscillations depends on the 
positions of sensors. It is necessary to perform the estimation 
of state space vector and design the control law considering 
this information. The optimization of measuring and control 
systems for flexible aerospace vehicles is not separated from 
estimator and regulator optimization. 

The main feature of matrix C is that the rows of C contain 
information about sensors and their position. This is used to 
formalize and solve the problem of sensors choice and their 
accommodation. 

For the pitching motion and two bending modes the state 
vector is given by ),,,,,,( 2211 qqqqcol &&&θθα=x . The corresponding 
matrix },,{ αωθ CCCC col=  for sensors measuring angle, 
angular velocity and linear acceleration and for all available 
nodes n of elastic body, where it is possible to set the above 
types sensors, is given by 

( )0000C xx ∂∂∂∂= 21 φφφ00θ ,  
( )xx ∂∂∂∂= 21 φφφ00 0000Cω , (10) 
( )21 φφφ01 0000C =a ,  



 
 

 

where measurement sensitivity matrix θC  corresponds to 
tangage, ωC  corresponds to angular velocity , and aC  
corresponds to acceleration. The vectors 00φ  and 01φ  are so-
called solid body shapes for translation and rotation. The 
shapes of bending oscillations of homogenous beam 

∑= )()(),( txtxq i ξφ  and its derivatives x∂∂ 1φ , x∂∂ 2φ  
corresponds to free bending oscillations. 
The row-vectors of matrix C correspond to sensors positions. 
The elimination of rows of matrix C in equation (9) is 
adequate to the elimination of sensors. It is reasonable to 
complete matrix C in consideration of || c(i) – c(j) ||, thus it is 
possible to change nodes partitions and exclude the 
possibility of ambiguity correspondence from rows of C to 
points of sensors location. The elimination of a priori not 
suitable points decreases the dimension of measurements 
optimization problem. 

3.2. Kalman estimation and optimal LQ regulator 

The Linear Quadratic Gaussian (LQG) control system 
contains optimal linear-quadratic regulator or tracking 
controller and stationary Kalman filter for estimation of state 
vector. Let us investigate LQG control system purposely to 
optimize measurements satisfying requirements for control 
and estimation. The system (8),(9) must be completely 
controllable and observable. Let us determine stochastic 
properties of unbiased white noises 
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In this case, the optimal estimation of state-vector is 

( ),DuCxyLBuAxx −−++= eee&  (12) 

,1−′= RCSL  (13) 
where S.>0 is a solution of associated with estimator Riccati 
equation 

0QCSRCSASAS =+′−′+ −1  (14) 
The control is implemented using observer state variables 

,  , 1 PBRFFxu r ′=−= −
e  (15) 

where P.>0 is a solution of associated with regulator Riccati 
equation 

,1 0QPBPBRPAPA rr =+′−+′ −  (16) 
for the following quadratic performance index with weighting 
matrixes 0. ,0. >≥ rr RQ , which condense requirements for 
dynamic properties of closed-loop system 
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dtEJ uRuxQx rr . (17) 

The time-averaged value of quadratic performance index is 
equal to 
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( )FRFSPQ r′+= trσ . (19) 

The value of σ  linearly depends from covariance matrix of 
state error estimation S, which in one's turn is linked with 
covariance matrix R, defining error dispersion of 
measurements. Let us assume that the measurement noises 
are not correlated variables and therefore the matrix V is 
diagonal matrix with vi,j elements corresponding to 
dispersions of noises of sensors in i nodes. The diagonal 
elements of inverse matrix V-1 equaling zero can be 
interpreted as absence of sensors in the corresponding node. 

Let us impose a responsibility for dynamical properties of 
closed-loop system with state-feedback law (15) to choice 
weight matrix Qr and Rr and fix this by setting minimal 
value of time-averaged quadratic performance indexσ . The 
matrix of state error estimation S defines the accuracy of 
estimation. 

4. MATHEMATICAL PROGRAMMING PROBLEM 
FORMULATION 

4.1. Restrictions 

The main question in the measurement optimization is where, 
which and how many sensors one should use to provide a 
necessary accuracy of state estimation and to realize the 
desired control system. Let us formulate the main 
requirements as 

( ) ,*σσ ≤S  (20) 

( ) *.  SRS ≤ . (21) 

The last inequality for solution of (21) defines that the 
difference is not a positive-definite matrix. 

The restrictions may be not so stringent if the accuracy is 
declared only for some of components of state vector or their 
linear combination exv′  

( ) *   d≤′ vRSv . (22) 
Fulfillment of these inequalities for various weight matrixes 
of a functional (19) one shall use as restrictions. Performance 
of these restrictions by some composition of sensors provides 
permissible nonoptimal solution Ro. 

4.2. Goal function 

Let us examine equation (14). All information about sensors 
condensed in diagonal matrix 1−R . Let us define 1Rx −= i,ii . 
The goal function for x can be written as 

( ) xx ρ′=f , (23) 
where ρ  is weight vector. The physical meaning of this 
measurements cost function minimization can be explained 
by the following features: 



 
 

 

0≥ix   it is condition for dispersions, 
0=ix   there are no sensor in i node, 

mki xxx +=  there are two sensors in i node. 

The last equality assumes that the signals from two sensors 
were processed as least squares solution ex  in the presence 
of known covariance diagonal matrix 

])([}{ 11 −−=′= mk xxdiagE wwR  and ]1   1[=C . The 
descriptions of least squares solution is as following 
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The coefficients of weight vector ρ  are specified under the 
assumption about priority of applied sensors (cost of the 
sensor, its weight, reliability, etc.) and setting points which 
can differ by variance of noise of measurements. 

4.3. Linear programming problem 

Let matrix S satisfies restrictions (20) and (21), then the 
equation (14) defines the restriction for x 

QASASCSxCS +′+=′ )(diag . (25) 
With taking into account the requirement to minimize goal 
function (23) minρ →′x the problem can be represented in 
the following form 
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This is complete setting of linear programming problem. 
Reduction of the equations to a canonical form justifies an 
optimum amount of sensors, and the outcome of a solution 
determines a locations and parameters of sensors. In other 
words the number of active restrictions defines a number of 
nonzero components of vector x, that equal to number of 
sensors. 
The solving problem with equalities-restrictions may exclude 
minimal solution for goal function, which increase precision 
of estimation. The following problem statement with 
extended vector of controlled variables ( )xx ~,col  formally 
compensates accuracy advantage 
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5. LMI APPROACH 

5.1. Properties of Linear matrix inequalities 

In view of the available limitations determined by the 
physical sense, and also in view of available limitations on 
minimum feasible dispersions of errors of sensors, the 
problem can be formalized in the form of a system of linear 
matrix inequalities (LMI) in which the ration "more" between 
matrixes is considered in the sense of positive definiteness of 
their difference. 

A linear matrix inequality (LMI) has the form 

0)(
1

>+= ∑
=

Δ
m

i
iio x FFxF  (28) 

where mx R∈  is the variable and the symmetric matrices 
nxn

ii RFF ∈= ′  is a basis for symmetric nxn matrices (m= 
n(n+1)/2). The inequality symbol in (28) means that F(x) is 
positive- definite, i.e 

0)( >′ uxFu  for all nonzero nR0u ∈≠∀ . (29) 

Multiple LMIs }0)(,...,0)({ )()1( >> xFxF n  can be expressed 

as the single LMI 0))(),....(({ )()1( >xFxF ndiag  

Nonlinear and convex inequalities can be converted to LMI 
form using Schur complements. The basic idea is as follows: 

the LMI    0)()(
)()( >⎥⎦
⎤

⎢⎣
⎡

′ xRxS
xSxQ , (30) 

where 
)()(,)()( ′=′= xRxRxQxQ  (31) 

is equivalent to 
0)()()()(,0)( 1 >′−> − xSxRxSxQxR  (32) 

In other words, the set of nonlinear inequalities (32) can be 
represented as the LMI (30). 

Let's consider the quadratic matrix inequality 

0QPBPBRPAPA 1 <+′++′ − , (33) 
where A, B, Q = Q', R = R' > 0 are given matrices of 
appropriate sizes, and P = P' is the variable. Note that this is a 
quadratic matrix inequality in the variable P. It can be 
expressed as the linear matrix inequality 

0RPB
PBQPAPA >⎥⎦

⎤
⎢⎣
⎡

′
−−′−  (34) 

This representation also clearly shows that the quadratic 
matrix inequality (33) is convex in P. 

Use of these properties allows considering a solution of the 
problem (27) in view as a linear programming problem with 
restrictions (20) and (21), which can be represented as a set 
of linear inequalities of the infinite order with taking to 
account property (29). 

5.2. LMI form of restriction for least-squares state estimation 
in presence of known covariance 

First of all, let's consider, how linear matrix inequalities for 
restrictions on dispersions of the errors of static least-squares 
estimation ex  for separate components of a state-space 
vector in presence of known covariance, given by matrix Do 
are formed 
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Except for restrictions on dispersions the positive 
definiteness of the matrixes entering into the equations 
determined by their physical sense is considered. 
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The multiple matrix inequalities can be presented as 
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The set of problem is minimization of linear goal function 
)min(arg hh ρ′=  for linear matrix inequalities (37) and (38) 

when the matrix variables R-1 и D has next fixed structure 
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This result directly follows from (30), (31) and (32). 

5.3. LMI form of restriction for Kalman estimation 

The more complex linear matrix inequalities satisfy to 
restrictions for estimation of state-space vector by using 
steady state Kalman filter 

( ),DuCxyLBuAxx −−++= eee&  (41) 

,1−′= RCSL  (42) 

0QCSRCSASAS =+′−′+ −1  (43) 

( )( ) .}{ SxxxxD ee =′−−= E  (44) 
The set of restrictions is given by 
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The multiple matrix inequalities can be presented as 
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The matrix variables are the matrixes R-1 and D and matrix 
variable S-1 with the same fixed structure 
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5.4. The expansion of LMI for the more general statement of 
the sensor system optimization problem 

In most cases for the problem of optimization of the sensors 
system it is enough to consider the examined restrictions on 
dispersions of estimations and exactitude of control. 
Installation of additional restrictions raises the order of 
system of inequalities and reduces efficiency of calculations. 

The system of linear matrix inequalities can be expanded in 
view of following additional conditions of optimization of 
system of sensors: 

 the joint optimization for sensors of various types with 
necessity to solve the more general Riccati equation; 

 the additional restrictions on a minimum errors of 
sensors; 

 the common optimization for all stages of motion, in view 
of a modification of parameters of model of plant and 
measurements and a modification of parameters of 
quadratic performance index; 

 the optimization within the bounds of robust control 
design; 

 the interpretation of an error of identification of forms as 
multiplicative error of measurements; 

 the interpretation of not identified shapes of high-
frequency oscillations as the distributed noise 

The increase of number of restrictions-inequalities in most 
cases does not lead to substantial growth of number of active 
restrictions. The elimination of redundant inequalities and 
reduction of a problem to canonical form still allows 
determines the optimum amount of sensors equal to number 
of active limitations, and the outcome of minimization of 



 
 

 

goal function determines localization and parameters of 
sensors. It is proved, that in this statement the problem 
concerns to convex programming that ensures high 
effectiveness of a method. The using of standard programs of 
LMI Toolbox of package Matlab simplifies application and 
research of the suggested approach to measures optimization 
for various methods of control systems design for flexible 
aerospace vehicles. 

6. CONCLUSIONS 

Optimization of measuring system for an elastic construction 
demands the full information about mathematical model of 
motion of plant and elastic oscillations and cannot be solved 
separately from optimization of control. 

The suggested approach based on minimization of chosen 
criterion, connected with the number, type and location of 
sensors and determining the expenditures on measurements, 
allows solving the given problem of optimization of sensors 
system. The execution of the set of restrictions corresponds to 
the fulfillment of requirements for the feasible accuracy of 
the estimation of the separate components of the state-space 
vector and the accuracy of control, which can be determined 
by the set of minimum values of the time-average values of 
criteria of quality, for the various stages of motion. 

The modification of parameters of plant and measurements, 
and also modification of requirements to accuracy of the 
estimation and control can be included in consideration. 

The additionally developed methods and algorithms for 
solving this problem, such as choice of controllable variables 
and elimination of surplus inequalities, guarantee the convex 
programming conditions for goal function and restrictions. 
This implies uniqueness of solution and good performance 
and convergence. 

The offered approach is used in the specialized program for 
modeling and research of a broad class of elastic plants, 
developed in IIAAT SUAI. 
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