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1 Abstract
In this paper we study two properties of the numerical

solutions of a controlled stochastic Lotka-Volterra
one-predator-two-prey model, namely the boundedness
in the mean of the numerical solutions and the strong
convergence of these solutions. We also establish and
solve, by means of the Stochastic Maximum Principle,
the corresponding optimal control problem in a pop-
ulation modeled by a Lotka-Volterra system with two
types of stochastic environmental fluctuations: white
noise and Lévy jumps. Our study shows, assuming
standard linear growth and Lipschitz conditions on the
drift and diffusion coefficients, that the boundedness of
the numerical solutions and the strong convergence of
the scheme are preserved in this stochastic model.

Key words
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2 Introduction
The Lotka-Volterra equations represent an important

and useful model of interaction between predator-prey
populations and in this paper we consider a controlled
stochastic approach to this model with three species,
one-predator-two-prey. This model assumes that the
prey population finds food all the time and that the preda-
tor’s food is completely dependent on the prey popula-
tion. We will assume that the environment in which the
three species develop presents natural random variations,
which plays an important role in any real ecosystem and
can influence the dynamics of the system, [Arnold, Hors-
themke, and Stucki, 1979]. We propose Wiener pro-

cesses to modeled them, [Romero-Meléndez, Castillo-
Fernández, and González-Santos, 2021]. In addition, we
consider some sudden environmental changes or phe-
nomena of an abrupt nature, such as climate change,
storms, volcanic eruptions, accidental oil spills or ra-
dioactive catastrophes, for which we propose Lévy pro-
cesses in our stochastic model.

In this work we will address the study of the numerical
solutions of the model, given the impossibility of
obtaining its analytical solutions, although it is possible
to have existence and uniqueness of the solutions with
the conditions at most linear growth over difussionn and
Lévy jumps and Lipschitz continuity over deterministic,
difussion and Lévy jumps terms. We are interested in the
boundedness and the strong convergence of numerical
solutions of that Optimal Control problem, assuming
standard linear growth and Lipschitz conditions on the
drift and diffusion terms, [Oksendal and Sulem, 2005],
[Situ, 2005]. Convergence rate and strong convergence
rate for numerical solutions of Stochastic Differential
Equations with driven jumps was studied in [Bao, et
al., 2011], [Higham and Kloeden, 2007] and [Higham
and Kloeden, 2005], respectively, but there are not
control functions in the processes. A characteristic of
our model is that it contains control functions in the
deterministic terms and in the terms corresponding
to the process of Lévy. We will establish an Optimal
Control problem and using the Pontryagin’s maximum
stochastic principle, we obtain the optimal controls in
terms of Lévy process and the state and adjoint variables.

Lévy processes are stochastic processes with station-
ary and independent increments, like sub-martingales
or Markov processes, that is, they are processes Z(t)
such that Z(t + s) − Z(s) and Z(r) are independent
distributions with the same probability, for s, t ≥ 0 and
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0 ≤ r ≤ t. For the sake of versatility, we consider
the Lévy jumps in our model to be driven by a random
Poisson measure N(t,Ω), with characteristic measure
ν(Ω).

Our model consists in a non-linear stochastic ordinary
differential equations system.

The stochastic differential system is of the general type

dx = f(t, x(t), u(t))dt+ g(t, x(t), u(t))dW (t)

+x(t)u(t)

∫
Rn

γ(t, x(t−), z)Ñ(dt, dz), (1)

where f(t, x, u) = (f1(t, x, u), . . . , fn(t, x, u))⊤

is a measurable function defined for (t, x, u) ∈
[0, T ] × Rn × Rm and Rm-valued, known as the
drift, u(t) = (u1(t), . . . , um(t)), u : R →
Rm is a measurable and bounded function called
the control which belongs to a compact space
U , g(t, x, u) = (g1(t, x, u), . . . , gm(t, x, u)), with
gj(t, x, u) = (g1j(t, x, u), . . . , gnj(t, x, u))⊤, 1 ≤ j ≤
m, is a measurable function defined also on [0, T ] ×
Rn × Rm and Rn×m-valued (n × m - real matrix),
called the diffusion coefficient and for the compensated
Poisson random measure Ñ(dt, dz), we write, according
to Lévy decomposition theorem [Oksendal and Sulem,
2005], Ñ(dt, dz) = ( Ñ1(dt, dz), . . . , Ñm(dt, dz)) and
Ñj(dt, dz) = Nj(dt, dz) − νj(dzj)dt, 1 ≤ j ≤ m,
with Nj(dt, dz) Poisson counting measure. Denoting by
x1(t), x2(t) and x3(t) the differentiable functions mean-
ing the density of the population of two preys and preda-
tor, respectively, our model is given by

dx1(t) = (ηx1(t)− βx1(t)x2(t))− δx1(t)x3(t)

−Ax1(t)u1(t))dt+ α1 dW1(t)

+x1(t)u1(t)

∫
Rn

γ(t, x1(t−), z)N(dt, dz)

dx2(t) = (ωx2(t)− βx2(t)x1(t)− ϵx2(t)x3(t)

−Bx2(t)u2(t))dt+ α2 dW2(t)

+x2(t)u2(t)

∫
Rn

γ(t, x2(t−), z)N(dt, dz)

dx3(t) = (−κx3(t) + δx3(t)x1(t) + ϵx3(t)x2(t)

−Cx3(t)u3(t))dt+ α3 dW3(t) +

x3(t)u3(t)

∫
Rn

γ(t, x3(t−), z)N(dt, dz) (2)

where xi(t−) denotes the left hand limit of x at time t,
and initial and final conditions:

x1(0) = x10, x2(0) = x20, x3(0) = x30

x1(T ) = x11, x2(T ) = x21, x3(T ) = x31 (3)

where η, ω, κ are positive constants in (0, 1], being the
intrinsic growth rate of two preys and predator popu-
lation, respectively, β, δ, η and ϵ in (0, 1], are positive

constants, meaning the contact rates per unit of time be-
tween prey-prey, predator-first prey and predator-second
prey, respectively, u1(t), u2(t), u3(t) are the controls,
W1(t),W2(t),W3(t) are standard independents Wiener
processes, N(t) is a Poisson process independent of
B(t) and γ : R3 → R3 the jump coefficient or Pois-
son’s process coefficient. In this stochastic controlled
model we introduce controls u1(t), u2(t), u3(t), repre-
senting, by example, the hunting in each population,
for which we have modulated their effect with constants
A,B,C ∈ (0, 1] and we take into account environmen-
tal fluctuations on the preys and the predator popula-
tions with parameters α1, α2, α3 ∈ (0, 1], respectively,
in three independent random variations for each popu-
lation, W1(t),W2(t),W3(t), given by standard Wiener
process and defined over a probability space (Ω,F ,P).
In the above, as is conventional, P denotes a probabil-
ity measure in the sample space Ω of the stochastic pro-
cess X : [0, T ] × Ω → [0,+∞) and E[X] denotes the
expected value with respect to the probability measure

P , that is, the integral E[XT ] =

∫
Ω

XT (ω) dP (ω) in the

sense of Lebesgue integration. Fs denotes the σ-algebra
generated by all random variables Xi with i ≤ s ; the
collection of such σ-algebras forms a filter of the proba-
bility space. The class of admissible controls U is the set
of Fs-predictable processes with values in U .

For the sake of simplicity we have selected η = ω =
κ = 1 and we have placed the equilibrium point of the
system at (1, 1). So, according to equation (1), we set,

f(t, x, u) = x1(t)− βx1(t)x2(t)− δx1(t)x3(t)−Ax1(t)u1(t)
x2(t)− βx2(t)x1(t)− ϵx2(t)x3(t)−Bx2(t)u2(t)
−x3(t)− δx3(t)x1(t) + ϵx3(t)x2(t)− Cx3(t)u3(t)


g(t, x, u) =

α1 0 0
0 α2 0
0 0 α3

 .

and we have the following stochastic optimal control
problem:
To find the controls u1(t), u2(t), u3(t) and the states
x1(t), x2(t), x3(t) of the system (1) which minimize the
following expected cost functional

J(u1, u2, u3) = E
{1

2

∫ T

0

3∑
i=1

(
x2
i (t) + u2

i (t)
)
dt
}
.

(4)
To solve this optimal control problem, we use the

Pontryagin Maximal Stochastic Principle [Oksendal and
Sulem, 2005]. We note that

setting the forward differential stochastic equations (2)
and the following backward differential stochastic equa-
tions, or terminal value problem:
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dp(t) = −
{
fx(t, x, u)

⊤p(t) +

m∑
j=1

gjx(t, x(t), u(t))
⊤qj(t)

− (f0(t, x(t), u(t)))x

}
dt+ q(t) dW (t)

+ u(t)p(t)

∫
Rn

γ(t, x(t−), z)N(dt, dz)

p(T ) = (p11, p31, p31)
⊤. (5)

where

f0(t, x, u) =
1

2

3∑
i=1

(
x2
i (t) + u2

i (t)
)
.

The adjoint variable p, the matrix q and the matrix of
processes dW are represented by

p(t) =

p1(t)
p2(t)
p3(t)

 , q(t) =

 q11(t) q12(t) q13(t)
q21(t) q22(t) q23(t)
q31(t) q32(t) q33(t)

 ,

dW (t) =

dW1(t)
dW2(t)
dW3(t)

 .

We define the following extended Hamiltonian [Yong
and Zhou, 1999]:

H(x(t), p(t), q(t), u(t)) =

< p(t), f(t, x, u)⊤ > + tr[q(t)g(t, x, u)⊤]− f0(t, x, u)

+

3∑
i=1

xi(t)pi(t)ui(t)

∫
Rn

γi(t, xi(t−), z)N(dt, dz)

That is to say

H = x1(t)p1(t)− βp1(t)x1(t)x2(t)− δp1(t)x1(t)x3(t)
− Ap1(t)x1(t)u1(t) + p2(t)x2(t)− βp2(t)x2(t)x1(t)
− ϵp2(t)x2(t)x3(t)−Bx2(t)p2(t)u2(t)− p3(t)x3(t)
+ δp3(t)x3(t)x1(t) + ϵp3(t)x3(t)x2(t)
− Cp3(t)x3(t)u3(t)

− 1

2

∑3
i=1

(
x2
i (t) + u2

i (t)− 2αiqii

)
+

∑3
i=1 xi(t)pi(t)ui(t)

∫
Rn γi(t, xi(t−), z))N(dt, dz)

(6)
Then, the adjoint equations corresponding to the pro-

cesses p(t), are the followings:

dp1(t) =
(
x1(t)− p1(t) + βp1(t)x2(t) + δp1(t)x3(t)

+ Ap1(t)u1(t) + βp2(t)x2(t)− δp3(t)x3(t)
)
dt

+

3∑
i=1

q1idW1(t)

+ u1(t)p1(t)

∫
Rn

γ(t, x1(t−), z)N(dt, dz)

dp2(t) =
(
x2(t)− p2(t) + βp2(t)x1(t) + ϵp2(t)x3(t)

+ Bp2(t)u2(t) + βp1(t)x1(t)− ϵp3(t)x3(t)
)
dt

+

3∑
i=1

q2idW2(t)

+ u2(t)p2(t)

∫
Rn

γ(t, x2(t−), z)N(dt, dz)

dp3(t) =
(
x3(t) + p3(t)− δp3(t)x1(t)− ϵp3(t)x2(t)

+ Cp3(t)u3(t) + δp1(t)x1(t) + ϵp2(t)x2(t)
)
dt

+

3∑
i=1

q3idW3(t)

+ u3(t)p3(t)

∫
Rn

γ((t, x3(t−), z)N(dt, dz)

(7)
And, according to the necessary conditions of Stochas-

tic Maximum Principle,

∂H(x, p, q, u)

∂u1
= 0,

∂H(x, p, q, u)

∂u2
= 0,

∂H(x, p, q, u)

∂u3
= 0, (8)

we find:

u1(t) = p1(t)x1(t)
(
−A+

∫
Rn

γ(t, x1(t−), z)N(dt, dz)
)

u2(t) = p2(t)x2(t)
(
−B +

∫
Rn

γ(t, x2(t−), z)N(dt, dz)
)

u3(t) = p3(t)x3(t)
(
− C +

∫
Rn

γ(t, x3(t−), z)N(dt, dz)
)

(9)
We note that the following condition:

(H) ∀ (t, x, p, q) ∈ [0, t] × Rn × Rn × Rn×m,
H(t, x, p, q, ·) achieves its minimum; i.e., there ex-
ists u0 ∈ U such that

H(t, x, p, q) := min
u∈U

H(t, x, p, q, u) = H(t, x, p, q, u0)

guarantees the existence of the optimal control, see
([Chighoub and Mezerdi, 2013], [Poznyak, 2008], [Wan
and Davis, 1979]). We have assumed that u(t) has
values in a given compact set U ∈ Rk and that u(t) is
predictable in such a way that condition (H) is satisfied.
Systems (2), (7) and (9) can be solved by numerical
methods, like the Euler-Maruyama scheme.
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The Euler-Maruyama scheme, corresponding to equa-
tion (1), is the simplest effective computational method
used in stochastic differential equations. The Euler-
Maruyama approximation is a continuous time stochas-
tic process x, obtained by truncating Itô’s formula of the
stochastic Taylor series after the first terms. From now
on, to carry out the numerical calculations, we will con-
sider (see [Higham and Kloeden, 2005])∫
Rn

γi(t, xi(t−), z)N(dt, dz) = h(ti, xi(t−), ui)N(t),

for some function h : Rm → Rm, h ∈ C1.

Let M be a positive integer and taking the time-step

size as ∆ =
T

M
∈ (0, 1), we define, for 0 ≤ t ≤ T ,

k(t) = | t
∆
|∆, (10)

where |a| is the integer part of a,

∆Wk = W (tk+1)−W (tk), ∆Nk = N(tk+1)−N(tk)

and

xk+1 = xk + f(tk, xk, uk)∆tk+1

+ g(tk, xk, uk)∆Wk+1

+ h(tk, xk, uk)∆Nk+1 (11)

For 0 ≤ t ≤ T , we define

x̄k(t) =

M−1∑
k=0

x(tk)1[tk,tk+1](t)

and

x∆(t) = x0 +

∫ t

0

f(s, x̄, u) ds+

∫ t

0

g(s, x̄, u) dW (s)

+

∫ t

0

h(s, x̄, u) dN(s)

(12)
The Euler-Maruyama scheme can be expressed in our

case by the systems:

x̄k+1,1 = x̄k,1 + (ηx̄k+1,1 − βx̄k+1,2 − δx̄k+1,1x̄k+1,3

−Ax̄k+1,1uk+1,1)∆
+α1∆Wk+1,1

+uk+1,1h(tk, xk+1,1, uk+1,1)∆Nk+1,1,
x̄k+1,2 = x̄k,2 + (ωx̄k+1,2 − βx̄k+1,2 − ϵx̄k+1,2x̄k+1,3

−Bx̄k+1,2uk+1,3)∆
+α2∆Wk+1,2

+uk+1,2h(tk, xk+1,2, uk+1,2)∆Nk+1,2,
x̄k+1,3 = x̄k,3 + (−κx̄k+1,3 − ωx̄k+1,3 − δx̄k+1,2x̄k+1,3

−ϵx̄k+1,3uk+1,3)∆
+α3∆Wk+1,3

+uk+1,3h(tk, xk+1,3, uk+1,3)∆Nk+1,3,
p̄k+1,1 = p̄k,1 + (x̄k+1,1 − βp̄k+1,1x̄k+1,2

+δp̄k+1,1x̄k+1,3 +Ap̄k+1,1(t)ūk+1,1

+βp̄k,+1,1x̄k+1,1 − κp̄k,+1,1x̄k+1,3)∆

+

3∑
i=1

q1i∆Wk+1,1

+ūk+1,1h(tk, xk+1,1, uk+1,1)∆Nk+1,1,
p̄k+1,2 = p̄k,2 + (x̄k+1,2 − p̄k+1,2 − ηp̄k+1,2x̄k+1,1

+ϵp̄k+1,2x̄k+1,3

+Bp̄k+1,2(t)ūk+1,2 + βp̄k,+1,1x̄k+1,1

−κp̄k,+1,3x̄k+1,3)∆

+

3∑
i=1

q2i∆Wk+1,2

+ūk+1,2h(tk, xk+1,2, uk+1,2)∆Nk+1,2,
p̄k+1,3 = p̄k,3 + (x̄k+1,3 − ωp̄k+1,3 − κp̄k+1,3x̄k+1,2

+Cp̄k+1,3(t)ūk+1,3 + γp̄k+1,1x̄k+1,1

+ϵp̄k+1,2(t)x̄k+1,2)∆

+

3∑
i=1

q3i∆Wk+1,3

+ūk+1,3h(tk, xk+1,3, uk+1,3)∆Nk+1,3

(13)
where

ūk+1,1 = −Ap̄k+1,1(t)h(tk, xk+1,1, uk+1,1)∆Nk+1,1

ūk+1,2 = −Bp̄k+1,2(t)h(tk, xk+1,2, uk+1,2)∆Nk+1,2

ūk+1,3 = −Cp̄k+1,3(t)h(tk, xk+1,3, uk+1,3)∆Nk+1,3

(14)

3 Strong convergence and boundedness
In this section we study properties of boundedness and

convergence of the numerical solutions of system (2).
Firstly, we will consider the strong convergence of nu-
merical solutions of system (1) to the exact solution, for
which we introduce the following Lipschitz assumption
on the drift and diffusion coefficients (see [Platen, 1999])
of equation (1), linear growth assumption on the drift and
boundedness of controls assumption:
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(H1) The functions f(t, x, u), g(t, x, u) and h(t, x, u)
satisfy the following global Lipschitz condition:
there exist positive constants C1, C2 and C3, such
that

||f(t, x, u)− f(t, y, u)|| ≤ C1||x− y||,
||g(t, x, u)− g(t, y, u)|| ≤ C2||x− y||,
||h(t, x, u)− h(t, y, u)|| ≤ C3||x− y||,

(H2) The functions f(t, x, u), g(t, x, u) satisfy the fol-
lowing linear growth condition: there exist positive
constant L, such that

||f(t, x, u)− f(t, y, u)||+ ||g(t, x, u)− g(t, y, u)||
+||h(t, x, u)− h(t, y, u)||

≤ L(1 + ||x||r + ||y||r)||x− y||

(H3) There exists a constant C4, such that, for i = 1, 2, 3
and 0 ≤ t ≤ T ,

||ui(t)|| ≤ C4

Moreover, we establish the following inequality, which
gives a limit on the probability that a stochastic pro-
cess exceeds any given value during a given time interval
[0, T ], see [Le Gall, 2013]:

Lemma 1 (Doob martingale inequality). Let Xt be an
real martingale and suppose that the stochastic process
is cadlag. Then, for ∀λ > 0 constant and ∀ p ≥ 1,

P

[
sup

0≤t≤T
Xt ≥ λ

]
≤

E[max(Xp
T , 0)]

λp
. (15)

The next result says that the Euler-Maruyama numeri-
cal solutions of (2) converge strongly to the exact solu-
tion if f and g satisfy the local Lipschitz condition and
the linear growth condition.

Theorem 1. Let x∆(t), x̄k(t) be the solution of equa-
tion (11) and the numerical solution of the Euler-
Maruyama scheme (2) respectively, then, under (H1) and
(H2) assumptions, there exist C positive constant, such
that, for any ∆ ∈ [0, 1] and 0 ≤ t ≤ T :

E(||x∆(t)− x̄k(t)||2|Fk(t)) ≤ C(2∆)(1 + ||x̄k(t)||2)

Proof. Assumptions (H1) and (H2) imply that

E(||x∆(t)− x̄k(t)||2|Fk(t)) =

E(||
∫ t

k/t)

f(s, x̄, u)ds+

∫ t

k/t)

g(s, x̄, u)dW (t)

+

∫ t

k/t)

h(s, x̄, u)dN(s)||2|Fk(t))

≤ E(||
∫ t

k/t)

||f(s, x̄, u)ds||2|Fk(t))

+E(||
∫ t

k/t)

||g(s, x̄, u)dW (s)||2|Fk(t))

+E(||
∫ t

k/t)

||h(s, x̄, u)dN(s)|2|Fk(t))

≤ 2(∆ + E(||
∫ t

k/t)

||h(s, x̄, u)dN(s)|2|Fk(t))) (16)

On the other hand, we claim that ther exist C > 0 such
that

E||∆Nk||2 ≤ C∆ (17)

Indeed, in virtue of Doob martingale inequality (15),
there exist λ such that we have:

P

[
sup

0≤t≤T
|N(t+ s)−N(s)| ≥ λ

]
≤

E[(|N(t+ s)−N(s)|2)]
λ2

. (18)

Furthermore, it is clear that

N(t+ s)−N(s) ∼ Poisson(λt) ∼ Poisson(kt)

whence

E[|N(t+ s)−N(s)|2] = k2 + k

Therefore,

P

[
sup

0≤t≤T
|N(t+ s)−N(s)| ≥ λ

]
≤ k2 + k

λ2
.

Now, denote by Ak the process

Ak = P

[
sup

0≤t≤T
|N(t+ s)−N(s)| ≥ λ

]
then, Ak satisfies

∞∑
k=1

P (Ak) < ∞

and, from Borell-Cantelli lemma [Kushner and Yin,
2003], there exist a process N with zero probability such
that ∀w ̸∈ N : ∃ k1(w) such that for k ≥ k1(w):

sup
0≤t≤T

|N(tk+1 + s)(w)−N(tks)(w)| ≤ M.

which proves (17). Finally, coming back to the inequal-
ity (16) we have:

E(||
∫ t

k/t)

||h(s, x̄, u)dN(s)||2|Fk(t)||)

≤ E(||h(s, x̄, u)dN(s)||2|Fk(t))

= ||h(s, x̄, u)||2E(||∆N(s)||2)
≤ C∆(1 + ||x̄k(t)||2),
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Hence it follows that

E(||x∆(t)− x̄k(t)||2|Fk(t)) ≤ C(2∆)(1 + ||x̄k(t)||2)

and, by application of the discrete Gronwall inequality,
we obtain:

E(||x∆(t)− x̄k(t)||2|Fk(t)) ≤ C2∆eC2∆

and, for ∆ → 0, we obtain the strong convergence to the
exact solution of equation (11).

Now, we will proof the boundedness of the numerical
solution of equation (11).

Theorem 2. Let x̄k(t) be the numerical solution of the
Euler-Maruyama scheme (12), then, under (H1), (H2)
and (H3) assumptions, there exist C positive constant,
such that, for 0 ≤ t ≤ T :

E(||x̄k(t)||2 ≤ C

Proof. By using the following inequality, for any real
numbers d, e, f :

||d+ e+ f ||2 ≤ 3(||d||2 + ||e||2 + ||f ||2)

and taking the expected value:

E||x̄k+1,1||2
≤ 3(E||x̄k,1 + (ηx̄k+1,1 − βx̄k+1,2 − δx̄k+1,1x̄k+1,3

−Ax̄k+1,1uk+1,1)∆||2 + E||α1∆Wk+1,1||2
+E||uk+1,1h(Xk+1,1, tk)∆Nk+1,1||2)
≤ 3(2(E||x̄k,1||2 + E||ηx̄k+1,1 − βx̄k+1,2

−δx̄k+1,1x̄k+1,3 −Ax̄k+1,1uk+1,1)∆||2)
+E||α1∆Wk+1,1||2
+E||uk+1,1h(Xk+1,1, tk)∆Nk+1,1||2)

According to hypothesis H1, H2 and H3 we have:

E||x̄k+1,1||2 ≤ 12(L+ ηβC1 − δLA) + αC2 + C3C4

as required.

4 Final considerations
The stochastic fluctuations to which our system is sub-

jected are varied and of diverse nature, so when consid-
ering the stochastic integration of equations (1),

x = x0 +

∫ t

0

f(t, x(t), u(t))dt+

∫ t

0

g(t, x(t), u(t))dW

+x(t)u(t)

∫ t

0

∫
Rn

γ(t, x(t−), z)Ñ(dt, dz), (19)

we must take into account that three types of integrals are
involved: the Riemann integral for the deterministic part,
the Itô integral for the Wiener process and the Lebesgue
integral for the Lévy process. It is possible to build a sta-
tionary Poisson point process to approximately simulate

our systems of stochastic differential equations driven by
Lévy jumps. According to [Zou and Wuan, 2014], we
can write, for a stationary Poisson process ξ(t):∫
Rn

γ(t, xi(t−), z)N(dt, dz) =
∑

0≤τ1<···<τn≤T

γ(τj , ξ(τj))

(20)
for Dξ = {τ1, τ2, · · · , τn} a domain of definition made
using the exponential distribution:

τk = F (k) := 1− e−0.25k, k = 0, 1, · · ·n, (21)

for a Poisson process ξ(·) defined on a new increasingly
ordered partition

D = Dξ ∪DW = {T1, T2, · · · , Tn = T}, (22)

where DW = {t1, t2, · · · , tn = T} is the partition of
the stochastic process without jumps, so Ti = τi ∈ Dξ

or Ti = ti ∈ DW , as following:

ξ(Tk) :=


(0.5)Tke−0.5

Tk!
, if Tk = τk

0 , if Tk = tk.

On the other hand, regarding the existence and unique-
ness of solutions, our model satisfies the conditions of at
most linear growth and Lipschitz continuity, [Oksendal
and Sulem, 2005]:

1 . (At most linear growth). There exist a constant
C1 < ∞ such that

∫
R

3∑
i=1

||γi(t, x(t), z))||2νk(dzk) + ||g(t, x, u)||2

+||f(t, x, u)||2 ≤ C1(1 + ||x||2) ∀x ∈ Rn

2. (Lipschitz continuity). There exist a constant C2 <
∞ such that∫

R

3∑
i=1

||γi(t, x(t), zi))− γi(t, y(t), zi))||2νk(dzk)

+||g(t, x, u)− g(t, y, u)||2 + ||f(t, x, u)− f(t, y, u)||2

≤ C2||x− y||2 ∀x, y ∈ Rn

Indeed, the following calculations and [Romero-
Meléndez, Castillo-Fernández, and González-Santos,
2021] guarantee that the above conditions are satisfied.
Considering

h(t, x, u) = x(t)u(t)

∫
Rn

γ(t, x3(t−), z)N(dt, dz)

= x(t)u(t)
∑

0≤τ1<···<τn≤T

γ(τj , ξ(τj))
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we have:

||h(t, x, u)− h(t, y, u)|| =
||x(t)u(t)

∑
···

γ(τj , ξ(τj))− y(t)u(t)
∑
···

γ(τj , ξ(τj))||

=
(
x(t)u(t)− y(t)u(t)

)∑
···

γ(τj , ξ(τj))

≤ ||x(t)u(t)− y(t)u(t)|| · ||
∑
···

γ(τj , ξ(τj))||

≤ ||u(t)|| · ||x(t)− y(t)|| · ||
∑
···

γ(τj , ξ(τj))||

≤ C4||x(t)− y(t)|| ·
∑
···

||γ(τj , ξ(τj))||

≤ C4q
k||x(t)− y(t)||

for some constants C4, q and k, where we have used that
the control is bounded and γ is an exponential random
variable. So, according to [Oksendal and Sulem, 2005],
for our model the existence and uniqueness of solutions
of system (2) are guaranteed.

5 Conclusion
In this paper, we have considered the stochastic and

controlled Lotka-Volterra one-predator-two-prey model
with jumps. Considering the numerical solutions via
Euler-Maruyama scheme, we have proved the bounded-
ness and strong convergence for this kind of solutions,
assuming standard linear growth and Lipschitz condi-
tions on the drift and diffusion terms.
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