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ABSTRACT
Impacts with friction are typical for very many machine and mechanism problems. They arise by short-
time contacts between two or more bodies, and they generate energy losses mainly due to friction in
tangential contact direction but also by small dissipative effects in normal contact direction. During the
last two decades a couple of impact models were established connected with the names of Moreau,
Fremond and Glocker, which all work quite satifactorily with respect to practical applications. We
shall focus on Glocker’s model, for which some experimental verifications are available. A missing
link are energy considerations, which are available, but nevertheless do not provide us with a complete
information for all possible cases. The paper tries to fill a bit this gap, though the investigations are
based on a combined phenomenological and theoretical basis. A theoretical consideration alone is not
known to the author.

1 INTRODUCTION

We consider rigid bodies as part of a multibody system. which come into contact including normal
and tangential features, and we focus especially on short-time contacts being interested for the energy
losses accompanying such processes. The principal situation is illustrated in Figure 1. Starting with the
models as developed in [3], [1] and [8] we use the following classical assumption for impacts and also
for impacts with friction:

• The duration of the impact is so short, that the mathematical description may assume a zero
impact time.

• As a consequence we neglect wave processes, which would take place in a finite time interval.

• Following these assumptions the mass distribution of the body does not change during the impact,
the bodies remain rigid.

• All positions and orientations of the impacting bodies remain constant. The translational and
rotational velocities of the bodies are finite and may change jerkyly during the impact.

• Accordingly the position of the impact point and that of the normal and tangential vectors remain
constant.

• All forces and torques, which are not impulsive forces and torques, remain also constant during
the impact.

• All during the impact evolving impulses act during the impact in a constant direction. Their lines
of action do not change and correspond to the normal and tangential vectors in the impact point.

• The impact can be divided into two phases: the compression phase and the expansion phase.
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Figure 1: Principal Situation in a Multibody Contact (i)

• The compression phase starts at timetA and ends at timetC . The end of the compression equals
the start of the expansion phase. Expansion is finished at timetE, which is also the end of the
impact.

During compression impulses in normal and tangential directions of the contact are stored, and during
expansion these stored impulses are released, both processes accompanied by losses. The losses result
from an application of Poisson’s friction law. A detailed description of these processes may be found in
the literature [8], [3], [4] and [5] with increasing depth of mathematical representation.

2 IMPACT CHARACTERISTICS

According to Moreau ([6], [5]) we may express the dynamics with and without impacts by one measure
differential equation in the form

Mdu + hdt − WdΛ = 0 ⇐⇒
{

Mu̇ + h− Wλ = 0 (t �= ti)
M(u+ − u−) − WΛ = 0 (t = ti)

(1)

The partWλ contains all contact reactions due to non-impulsive contacts and the partWΛ all impulsive
contact reactions. The timeti ∈ Ikl represents one of the instants (i), where an impact takes place. The
vectorh includes all non-impulsive and applied forces, whatsoever, and for multibody systems without
closed loops we also include in the generalized coordinates(q, q̇) all bilateral constraints.

We start with the compression phase and the normal impact direction. At the end of compression the
relative normal velocity is either zero or non-negative,ġNi ≥ 0. The tangential compression phase is
characterized mainly by friction. At the end of compression we may have three states: Firstly, sliding
in a positive tangential direction (ġNC > 0), where the tangential impulse acts during this phase in
opposite direction withΛTC = −µΛNC , secondly, sticking at the end of compression (ġNC = 0),
where the tangential impulse is small enough to generate sticking during the whole compression phase,
and thirdly, sliding in a negative tangential direction (ġNC < 0), where the tangential impulse acts
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Figure 2: Contact Laws for Impacts

during this phase in opposite direction withΛTC = +µΛNC . The processes for these two directions
are depicted by the well-known graphs of Figure 2.

The impulse stored during compression is released with a loss governed by Poisson’s law. Restoring
the tangential impulse affords some additional considerations. According to Poisson’s law we get back
the stored tangential impulseΛTCi of the (i)th contact with a certain loss, that is(εT iΛTCi), where
Poisson’s losses are quantified by(0 ≤ εT i ≤ 1). The tangential friction coefficientεT i must be
measured. But this contains not all losses during expansion. The restoration of the tangential impulse
possesses another quality compared with the restoration of the normal impulse, because it cannot take
place independently from the normal impulse, which as a matter of fact represents the driving constraint
impulse for the generation of tangential friction forces. Therefore we shall assume, that the restoration
of the tangential impulse is additionally accompanied by losses in ”normal direction” expressed byεNi.
Figure 3 illustrates these processes, see also [3] and [8].

3 ENERGY LOSSES

The loss of energy is the difference of the total system energy after an impact and before an impact. In
terms of the generalized velocitiesq̇ we write

∆T =TE − TA ≤ 0

∆T =
1
2
q̇T

EMq̇E − 1
2
q̇T

AMq̇A =
1
2
(q̇E + q̇A)T M(q̇E − q̇A). (2)

These are expressions considering scleronomic systems without an excitation by external kinematical
sources. Applying the relations as presented in [8], we get for the energy expression the form

2∆T =2∆T1 + ∆T2 = +2
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(
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)
where Gij = W T

i M−1W j, i, j ∈ {N,T} (3)

G is the mass projection matrix, which is quadratic and positive definite with the exception of dependent
constraints, where it is semidefinite. Theġ are relative contact velocities and theΛ impulses. The
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Figure 3: Shifted Normal and Tangential Characteristics for Impact Expansion

indices N,T stand for normal and tangential, respectively, the indices C,E for the end of compression
and the end of expansion, respectively. The second term of the energy equation is a quadratic form and
for itself always positive or zero, and from this we have∆T2 ≤ 0, always. The energy loss has to be
negative, which will be decided by the first term of the above relations. If this term is negative or at least
zero, the condition∆T ≤ 0 will hold. Therefore we shall concentrate on the first term which writes in
more detail

2∆T1 = + 2
(

ġNE

ġTE

)T [(
ΛNC

ΛTC

)
+

(
ΛNE

ΛTE

)]
=

= 2ġT
NE(ΛNC + ΛNE) + ġT

TE(ΛTC + ΛTE) (4)

For the evaluation of this equation we have to discuss the models. The compression/expansion model
as considered here is a very powerful one and approved by many applications, but it does not give
any evidence of the points where transition from friction to sliding, or vice versa, take place. But this
is decisive for evaluating energies. As we are dealing with models, we are free to define that in a
way, which is physically plausible. And we define, that transitions occur always at the end of the phases
compression and expansion in an infinitesimal short instant of time not influencing the impact dynamics
but only going from one branch of the corner laws to another branch, which means, transitions take place
in the corners of the contact laws.

An example illustrates it: Having sliding or sticking during the expansion, we need to have also a zero
normal velocityġN for realizing these states. On the other hand, if we have detachment at the end of
expansion we need to have a normal velocityġN �= 0, which contradicts the first necessity. A way out
of this dilemma can only consist in a transition definition taking place firstly at the very end of any of
the two phases and taking place secondly extremely shortly without energy losses.

So it can be shown, that the first terṁgT
NE(ΛNC + ΛNE) of the energy equation (4), last line, is not

zero due to positive normal impulses(ΛNC + ΛNE) and due to a non-zero end velocityġNE after the
impact, which is physically reasonable for a separation of the two contacting bodies. But on the other
hand sliding or sticking during expansion requires a zero normal relative velocityġNE in the contact,
which makes the above mentioned term to zero. TheΛNE-value slips into the corner of Figure (3)
allowing the system to build up the necessary separation velocity. From this we assume, that during the
expansion phase the terṁgT

NE(ΛNC + ΛNE) = 0 is zero.

As a result of these arguments and of the last condition of continual contact during the impact we get



for compression and expansionΛN > 0 andġN = 0, which is also part of the complementarity, and
therefore simply

2∆T1 = 2ġT
TE(ΛTC + ΛTE), (5)

the sign of which we have to investigate. For this purpose we consider this equation with respect to the
following four cases, see for the arguments always the Figures 2 and 3:

• sticking during compression, sticking during expansion

The tangential impulses have to be within the appropriate friction cones. The tangential velocities
are zero, therefore we need not to consider the magnitudes of the impulses.

−diag(µ0)ΛNC ≤ ΛTC ≤ +diag(µ0)ΛNC , ΛTEL ≤ ΛTE ≤ ΛTER

=⇒ ġT
TE(ΛTC + ΛTE) = 0

• sliding during compression, sliding during expansion

Sliding means single-valued impulse laws according to Coulomb’s law. Some difficulties will
appear for the cases with reversed sliding, that means, with a tangential relative velocity the sign
of which is different during compression and during expansion. Therefore we have to consider
the two cases without and with tangential reversibility. For the first case we do not have a change
of sign of the relative tangential velocity, which givessign(ġTC) = sign(ġTE). This comes out
with the relations:

ġT
TEΛTC = −ġT

TE[diag(µ)sign(ġTE)ΛNC ] = −diag(µ)|ġTE |ΛNC ≤ 0,

=⇒ ġT
TE(ΛTC + ΛTE) < 0

The case with tangential reversibility is more complicated, because it includes a change of sign of
the tangential relative velocity and thus at least an extremely short stiction phase, which we put
exactly at the point (end of compression)/(beginning of expansion). The sliding velocity during
compression decreases until it arrives at one of the corners of Figure 2, then we get an extremely
short shift from this corner to the other one, which allows the contact to build up a tangential
velocity with an opposite sign, then valid for the expansion phase. Only by such a short stiction
phase a reversal of tangential velocity is possible. On the other hand such a transition from stick
to slip, as short as it might be, follows the same process as for the next case sticking/sliding.
Therefore it is dissipative:

=⇒ ġT
TE(ΛTC + ΛTE) < 0

• sticking during compression, sliding during expansion

The transition from sticking in compression and sliding in expansion follows the mechanism
(Figure 2): IfΛTC ≷ 0, then sliding is only possible for being at the very end of compression on
the friction cone boundary withΛTC = ±diag(µ)ΛNC and ġTC−at ≶ 0 (at = after transition
stick-slip). This results always in a negative sign of the expression(ġTTEΛTC). For the rest we
assume a continuation of the signs after going from stick to slip[sign(ġTE) = sign(ġTC−at)].
Then we arrive at:

=⇒ ġT
TE(ΛTC + ΛTE) < 0

• sliding during compression, sticking during expansion

This case is again simpler, because we get sticking at the end with a zero relative tangential
velocity. Therefore we need not to consider the impulses.



=⇒ ġT
TE(ΛTC + ΛTE) = 0

• summarized result for all cases

=⇒ ġT
TE(ΛTC + ΛTE) ≤ 0 =⇒ ∆T1 ≤ 0 =⇒ ∆T ≤ 0

One may object that the above considerations assume in the case of multiple impacts the same impact
structure for all simultaneously appearing impacts, which is usually not true. But even any combination
of the above four cases for simultaneous impacts gives a loss of energy. Practical experience indicates
in addition that the simultaneous appearance of impacts is extremely scarce, it is an event, which nearly
does not happen.

As a final result we may state that the above evaluation confirms the physical argument, that any impact
processes are accompanied by energy losses. This confirms also the well-known statement of Carnot,
that ”in the absence of impressed impulses, the sudden introduction of stationary and persistent con-
straints that change some velocity reduces the kinetic energy. Hence, by the collision of inelastic bodies,
some kinetic energy is always lost”.

The above considerations and the underlying theory have been confirmed not by the experimental work
of Beitelschmidt [1], but also by many industrial projects where the non-smooth methods were applied
[9], [2].
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