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Abstract
This paper studies the consensus seeking problem for

a group of agents with general discrete-time linear
time-invariant dynamics over Bernoulli random com-
munication networks. It is shown for the first time that
the connection weights in a communication network
should be treated as control parameters to improve the
solvability of the consensus problem. For networks
without packet loss, it is proved that the asymptotic
consensus problem is solvable under static state feed-
back protocol if and only if the communication topol-
ogy has spanning trees. For Bernoulli lossy networks, it
is revealed that the link loss probabilities of a network
have non-negligible effects on the consensus seeking
ability of multi-agent systems. A packet loss probabil-
ity bound is obtained to ensure the solvability of the
mean square consensus problem for the case when the
mean topology has spanning trees.
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1 Introduction
Consensus seeking in multi-agent systems has re-

ceived considerable attention due to its broad appli-
cations in various areas, such like load balancing of
communication networks [Cybenko, 1989], sensor net-
works [Olfati-Saber and Shamma, 2005; Xiao, Boyd
and Lall, 2005], flocking of birds [Jadbabaie, Lin and
Morse, 2003], formation control[Moreau, 2005; Tan-
ner, Jadbabaie and Pappas, 2007], cooperative control
[Fax and Murray, 2004], and so on.
In load balancing [Cybenko, 1989], consensus seek-

ing aims at assigning to each processor the same num-
ber of tasks. In flocking [Jadbabaie, Lin and Morse,
2003], consensus means each bird moving in the same
direction. In both cases, each agent runs a first-order
integrator model to update its state. In the formation

control of mobile vehicles, agents are often treated as
rigid bodies and they are often modeled as first-order
or second-order integrators [Hong, Chen and Bushnell,
2008; Hu and Hong, 2007; Moreau, 2005; Ren and
Beard, 2005; Olfati-Saber and Murray, 2004]. The
consensus protocol, which acts as each agent’s control
input, drives the agents to rendezvous. Most of cur-
rent works on consensus focus on first-order or second-
order agents. However, there are also a number of ap-
plications in which agents are modeled by general lin-
ear dynamical systems, while the relevant results are
very limited [Fax and Murray, 2004; Ma and Zhang,
2008; Tuna, 2008; Wang, Cheng and Hu, 2008].
Similar to stabilizability problem in stability theory,

there is a fundamental problem in consensus seeking,
i.e. whether there exist consensus protocols driving a
multi-agent system to consensus. Here we briefly call
it consentability problem. The problem is rarely dis-
cussed in literature. For first-order multi-agent sys-
tems, the consensus conditions proposed in [Hatano
and Mesbahi, 2005; Moreau, 2005; Olfati-Saber and
Murray, 2004; Porfiri and Stilwell, 2007; Ren and
Beard, 2005; Tahbaz-Salehi and Jadbabaie, 2008] are
actually the consentability conditions because these
conditions almost have nothing to do with the param-
eters of consensus protocols. For the second-order
case, [Zhang and Tian, 2009] reveals that under Marko-
vian switching topologies there exist linear consen-
sus protocols solving the mean square consensus prob-
lem, if and only if the union of the topology set has
a globally reachable node. [Wang, Cheng and Hu,
2008], [Ma and Zhang, 2008] and [Tuna, 2008] dis-
cuss the consentability condition of general linear time-
invariant (LTI) multi-agent systems under given con-
nection weights. [Wang, Cheng and Hu, 2008] proves
that if the adjacent topology is frequently connected
then the consensus is achievable via decentralized state
feedback controllers. [Ma and Zhang, 2008] and [Tuna,
2008] consider the static output feedback consensus
protocol and point out that the consentability requires
the fixed topology to have spanning trees.



In almost all of the existing references on consensus,
connection weights are treated as a part of communi-
cation topology rather than control parameters, and the
solvability of the consensus problem is independent of
the connection weights. However, it will be shown by
an example in this paper that such a conclusion does
not hold for general discrete-time multi-agent systems,
and the connection weights must be seen as control pa-
rameters in solving the consensus seeking problem.
This paper focuses on the agents with general discrete-

time linear dynamics. We assume the agents exchange
information through communication networks. There
is a priori fixed communication topology, establishing
which are the feasible communications among agents.
For the network without packet loss, it is proved that
the system is asymptotically consentable under state
feedback consensus protocol if and only if the topol-
ogy has spanning trees. For Bernoulli random lossy
networks, it is proved that the mean square consensus
problem is solvable only if the mean topology has span-
ning trees. What is more, we show that the packet loss
probabilities of the network are vital to the solvability
of mean square consensus problem. When the prob-
abilities are larger than some critical value, the con-
sensus seeking problem may be unsolvable. A suffi-
cient probability bound is also obtained. In addition,
for a given linear state feedback consensus protocol, a
packet loss probability condition under which the sys-
tem can achieve mean square consensus is also pro-
posed.

2 Problem Formulation
This section formulates the consensus problem that

we address in this paper. Here we mainly focus on a lin-
ear consensus protocol based on static state feedback.

2.1 Communication Description
First of all, some notions on graph theory are intro-

duced.G = (V, E ,A) often denotes a graph, whereV
is the node set,E denotes the edge set andA = [aij ]
is the adjacency matrix. If the edgeεij = (i, j) ∈ E ,
i.e. nodej can obtain information from nodei, then
aji = 1, otherwiseaji = 0. A directed path is
a sequence of edges in a directed graph of the form
(i1, i2), (i2, i3) · · · . A directed treeis a directed graph
in which every node has exactly one parent except for
one node, called the root, which has no parent and
has a directed path to every other node. Adirected
spanning treeG0 = (V0, E0,A0) of the directed graph
G = (V, E ,A) is a subgraph ofG such thatG0 is a di-
rected tree andV0 = V.
In this paper, the agents exchange information through

a lossy communication network. We assume a
Bernoulli network: 1) at each iteration, a network link
is lost with some probability; 2) network links may
have different but constant link probabilities; 3) links
fail independently of each other.
Suppose there is a priori fixed communication topol-

ogyG = (V, E ,A), establishing which are the feasible
communications among agents. So ifεji ∈ E , aij(t) is
varying between 0 and 1, otherwiseaij(t) ≡ 0. Define
rij the packet loss probability from agentj to i, then if
εji ∈ E , {aij(t), t ≥ 0} is driven by a Bernoulli pro-
cess with probabilityPr(aij(t) = 0) = rij < 1, where
Pr(x) denotes the probability of eventx. The mean
topology of the network is defined as a topology cor-
responding to adjacency matrixE(A(t)), whereE(·)
denotes the expected value. Obviously, the mean topol-
ogy has the same edge set with the given communica-
tion topologyG.

2.2 State Feedback Consensus Protocol
Consider a group ofn agents, with linear dynamics

xi(t + 1) = Axi(t) + Bui(t) (1)

wherexi ∈ Rp, ui ∈ Rq denote the state and control
input of agenti respectively;A ∈ Rp×p, B ∈ Rp×q

are constant matrixes and(A,B) is stabilizable. Sup-
pose the open-loop system is not asymptotically stable,
i.e. ρ(A) ≥ 1, whereρ(·) denotes the spectral radius of
a matrix.
We say that the protocol asymptotically solves the

consensus problem, if and only if for any initial
state, the agents agree upon a common state, i.e.
limt→∞ ‖xi(t)− xj(t)‖ = 0 for anyi 6= j. Moreover,
the protocol solves the consensus problem in mean
square sense, if and only if for anyi 6= j there holds
limt→∞E(‖xi(t)− xj(t)‖2) = 0.
Here state information is exchanged via a weighted

and directed random communication network, thus we
apply a static state feedback consensus protocol:

ui(t) = K
n∑

j=1

aij(t)wij(xj(t)− xi(t)) (2)

whereK ∈ Rq×p is the state feedback gain;aij(t) ∈
{0, 1} denotes the connection from agentj to i at time
t; wij ∈ R is the connection weight of edgeεji. Here
K andwij are control parameters to be designed.

2.3 System Transformation
Define the augmented statex(t) = [xT

1 , · · · , xT
n ]T

and the Laplacian matrixL(t) = [lij(t)]n×n, where
for i 6= j, lij(t) = −aij(t)wij , and lii(t) =∑n

j=1 aij(t)wij . Then system (1) with consensus con-
trol (2) becomes

x(t + 1) = (In ⊗A− L(t)⊗BK)x(t) (3)

Here⊗ denotes Kronecker product. Obviously, for
1n = [1, · · · , 1]T , L(t)1n = 0 holds for all graphs.
Let zi(t) = xi(t) − x1(t), i = 2, · · · , n,

then system (1)-(2) asymptotically reaches consen-
sus is equivalent tolimt→∞ ‖zi(t)‖ = 0, and it



achieves consensus in mean square sense if and only
if limt→∞E(‖zi(t)‖2) = 0. Defining z(t) =
[zT

2 , · · · , zT
n ]T we conclude that

z(t + 1) = F (t)z(t) (4)

where F (t) = In−1 ⊗ A − L̃(t) ⊗ BK, L̃(t) =
[l̃ij(t)](n−1)×(n−1), l̃ij(t) = l(i+1)(j+1) − l1(j+1).
Therefore, the following lemma is obvious.
Lemma 1: Multi-agent system (1)-(2) reaches consen-

sus asymptotically (or in mean square sense), if and
only if system (4) is asymptotically stable (or mean
square stable).

3 Main Results
In this section, we discuss the consentability problem

defined as follows.
Definition 1: If there exists a state feedback gain

K ∈ Rq×p and connection weightwij ∈ R such that
the protocol (2) asymptotically solves the consensus
problem of system (1), we say system (1) isasymp-
totically consentableunder static state feedback con-
sensus protocol. Furthermore, if there existK andwij

such that the protocol (2) solves the consensus problem
of system (1) in mean square sense, then we say sys-
tem (1) ismean square consentableunder static state
feedback consensus protocol.

3.1 Communication without Packet Loss
First of all, we explain why the connection weights are

considered as control parameters in Definition 1. In-
deed, most of previous work on the consensus or con-
sentability problem treatedwij as fixed positive con-
stant. Coincidentally, for the single integrator, double
integrator, even high-order continuous-time LTI multi-
agent systems, the consentability of the system is inde-
pendent of the connection weights as long as they are
positive [Ma and Zhang, 2008; Ren and Beard, 2005;
Wang, Cheng and Hu, 2008; Zhang and Tian, 2009].
This gives us an impression that they can be simply ab-
sorbed into the elementsaij of the adjacency matrix.
However, our Example 1 will show that the connection
weights play a non-negligible role for the consentabil-
ity of discrete-time LTI multi-agent systems. Even if
the topology has a spanning tree and each agent is sta-
bilizable, the consensus problem may be unsolvable.
Example 1: Consider a network of 3 agents, the edge

set is given as{ε12, ε21, ε23}. Obviously, the graph has
a spanning tree. Assume the connection weights are
given aswij = 1 for all i, j, then eigenvalues of̃L
are 1 and 2. Given the system matrixA = 5, B =
1. By Lemma 1, consensus is achieved if and only if
ρ(A−BK) < 1 andρ(A−2BK) < 1, i.e. 4 < K < 6
and2 < K < 3. Obviously, such a gainK doesn’t
exist. So even if the graph has a spanning tree and the
connection weights are positive, the consensus problem
may be unsolvable.¤

Now let us consider the consentability condition of
system (1) in the communication networks without
packet loss, i.e. the connection graph is fixed.
Denote det(·) as the determinant value of a ma-

trix, λ1, · · · , λn−1 as eigenvalues of̃L . Then
det(sI(n−1)p−F ) =

∏n−1
i=1 det(sIn−1−(A−λiBK)),

and thus the eigenvalues ofF are composed of all
eigenvalues ofA− λiBK, i = 1, · · · , n− 1.
First of all, we study how the connectivity of a graph

affect the eigenvalues of̃L.
Lemma 2: If the graph has no directed spanning trees,

under any connection weight,̃L has at least one zero
eigenvalue.
Proof: Since for all graphs there exists a nonsingu-

lar matrixT , T =
[

1 0
1n−1 In−1

]
such thatT−1LT =

[
0 ∗
0 L̃

]
. Thus by the results in [Ren and Beard, 2005],

Lemma 2 can be obtained.¤
Theorem 1: When there’s no packet loss in trans-

missions, there exist connection weights and feedback
gain K such that system (1) asymptotically achieves
consensus under linear consensus protocol (2), if and
only if the fixed communication topology has a directed
spanning tree.
Proof: (Necessity) If the topology has no spanning

trees, by Lemma 2 for any connection weightwij , L̃
has at least one zero eigenvalue. So for anyK ∈ Rq×p,
there holdsρ(F ) ≥ ρ(A) ≥ 1, which is contrary to
consensus.
(Sufficiency) The proof of sufficiency is constructive.

If the topology has directed spanning trees, there must
exist proper connection weights such thatλ1 = · · · =
λn−1 6= 0. Since(A,B) is stabilizable, there exists
K stabilizingA − λiBK, and thusρ(F ) < 1. In the
following, we’ll give an approach to the choice ofwij

such that all eigenvalues of̃L are nonzero and equal.
DenoteG0 = (V, E0,A0) as a directed spanning tree,

obviouslyE0 ⊂ E . Choose

wij =





1 if εij ∈ E0;
0 if εij ∈ E \ E0;
arbitrary else.

(5)

Then it can be easily obtained that all eigenvalues ofL̃
are 1, thus the sufficiency is proved.¤
Back to Example 1, if the connection weights are se-

lected asw1j = w2j = 0.5, w3j = 1 for j = 1, 2, 3,
then as long as4 < K < 6, protocol (2) solves the
consensus problem of system (1). Thus the system is
asymptotically consentable.

3.2 Communication with Packet Loss
In this subsection we will discuss the consentability

condition when the network has packet loss.
Theorem 2: If there exist linear protocol (2) solving

the mean square consensus problem of system (1), then
the mean topology has a spanning tree.



Proof: SinceE(‖z(t)‖) ≥ ‖E(z(t))‖, system (4) is
mean square stable only iflimt→∞E(z(t)) = 0. Let
e(t) = E(z(t)), then from system (4) we have

e(t + 1) = E(F (t))e(t) (6)

By Lemma 1 the multi-agent system (1)-(2) reaches
mean square consensus only if (6) is asymptotically
stable. Due to the fact thatE(L(t)) is the Laplacian
matrix of the topologyG with the connection weight
wij(1− rij) andE(L̃(t)) is its corresponding reduced
Laplacian matrix, if the topology has no spanning trees,
by Lemma 2 for any connection weight,E(L̃(t)) has
at least one zero eigenvalue. SinceE(F (t)) = In−1 ⊗
A − E(L̃(t)) ⊗ BK, there doesn’t existK stabilizing
E(F (t)), thus system (6) cannot be asymptotically sta-
ble, which is contrary to consentability.¤
Theorem 2 provides a necessary condition of mean

square consentability, which is a topology condition.
For the first-order and second-order integrator agents,
[Hatano and Mesbahi, 2005],[Tahbaz-Salehi and Jad-
babaie, 2008] and [Zhang and Tian, 2009] have shown
that the mean square consentability just depends on the
topology condition while is independent of packet loss
probability. For the general discrete-time LTI multi-
agent systems, when the topology condition is satis-
fied, is the mean square consensus problem solvable
for any Bernoulli networks? A negative answer is given
through the following example.
Example 2: Consider there are 2 agents in the net-

work, and the packet loss probability of the link is
r > 0. Agent 1 is the leader and agent 2 is the fol-
lower, thena12 ≡ 0, a21 is varying between 0 and 1
with probabilityr and1 − r. Given the system matrix
asA = 2, B = 1, then by Lemma 1 system achieves
mean square consensus if and only ifr ∗A⊗A + (1−
r) ∗ (A − w21BK) ⊗ (A − w21BK) < 1([Costa and
Fragoso, 1993]), i.e.4r + (1− r)(2−w21K)2 < 1. It
is obvious that whenr ≥ 0.25, for all w21 andK the
above inequation does not hold. So the consentability
condition must depend on the packet loss probability.
¤
Our concerning problem is that how to search for

a packet loss probability boundr∗ such that for any
rij < r∗ the system is mean square consentable under
the satisfied topology condition. This problem seems
to be complicated. We firstly discuss the mean square
stability condition of a Bernoulli switching system. De-
fine a system

y(t + 1) = (A− a(t)BK)y(t) (7)

where A ∈ Rp×p, B ∈ Rp×q, (A,B) is stabi-
lizable, ρ(A) ≥ 1; {a(t), t ≥ 0} ⊂ {0, 1} is
driven by a Bernoulli switching process with probabil-
ity Pr(a(t) = 0) = r.
Lemma 3: If there exist symmetric positive definite

matrixesQ0, Q1 ∈ Rp×p > 0 and matrixY ∈ Rq×p

such that the following LMIs hold




Q0
√

rQ0A
T
√

1− r(Q0A
T )

∗ Q0 0
∗ 0 Q1


 > 0, (8)




Q1 ∗ ∗√
r(AQ1 −BY ) Q0 0√

1− r(AQ1 −BY ) 0 Q1


 > 0, (9)

then system (7) is mean square stable under state feed-
back gainK = Y Q−1

1 . Furthermore, if the packet loss
probability isPr(a(t) = 0) = α and the LMI

Q1 > Q0, (10)

holds as well, then as long asα ≤ r, system (7) is
always mean square stable underK = Y Q−1

1 .
Proof: Let V (y(t), a(t)) = yT (t)Pa(t)y(t), Pa(t) =

Q−1
a(t), thenE(V (y(t + 1), a(t + 1))|y(t), a(t) = s) =

yT (t)AT
s (rP0 + (1 − r)P1)Asy(t), wheres = 0, 1,

A0 = A,A1 = A−BK.
If AT

s (rP0 + (1 − r)P1)As < Ps, thenE(V (y(t +
1), a(t + 1))|y(t), a(t)) < V (y(t), a(t)) and thus
system (7) is mean square stable. Pre- and
post-multiplying the both sides of the above in-
equality by Qs and denotingY = KQ1 yields
rQ0A

T Q−1
0 AQ0 + (1− r)Q0A

T Q−1
1 AQ0 < Q0 and

r(Q1A
T−Y T BT )Q−1

0 (AQ1−BY )+(1−r)(Q1A
T−

Y T BT )Q−1
1 (AQ1−BY ) < Q1, which combined with

Schur complement lemma leads to (8) and (9).
On the other hand, if LMI (10) holds, i.e.P0 > P1,

then for all α ≤ r, there holdsAT
s (αP0 + (1 −

α)P1)As < Ps, and thus when the packet loss prob-
ability is α, system (7) is still mean square stable under
K = Y Q−1

1 . ¤
We are in a position to give a sufficient mean square

consentability condition for the multi-agent systems in
lossy networks. By applying the results in stochastic
control theory, the Bernoulli switching system (4) is
mean square stable if and only ifρ(E(F (t)⊗F (t))) <
1 ([Costa and Fragoso, 1993]). Therefore, we could
seek for consentability condition by discussing un-
der what condition there existK and wij such that
ρ(E(F (t)⊗ F (t))) < 1 holds.
Theorem 3: If the mean topology has spanning trees

and the packet loss probabilityrij < r∗ holds for all
εji ∈ E , then in the lossy networks the mean square
consensus of system (1) is achievable under static state
feedback protocol (2), wherer∗ is given by

r∗ = sup{β > 0; LMIs (8)− (10) have

feasible solutions for ∀r ∈ (0, β)} (11)



Proof: Here, we provide a brief constructive proof.
Similar to the proof of Theorem 1, if the mean topol-
ogy, i.e. the given communication topology, has di-
rected spanning trees, denoteG0 as one directed span-
ning tree, and define the connection weightwij as that
in (5).
Renumber the agents such that each agent’s parent

node is lower numbered than itself, and obtain a new
graphḠ0. Then the corresponding reduced order Lapla-
cian matrix is a lower triangular matrix with diagonal
elementsa2(t), a3(t), . . . , an(t) ∈ {0, 1}. ai(t) = 0
represents that at timet there’s no information received
by agenti from its parent node, andPr(ai(t) = 0) =
αi ∈ {rij |εji ∈ E(Ḡ0)}. Therefore,F (t) in (4) is of
the form

F (t) =




A− a2(t)BK 0
...

∗ A− an(t)BK


 ,

and thusF (t)⊗ F (t) is a lower triangular matrix with
the diagonal block(A− ai(t)BK)⊗ (A− aj(t)BK),
i, j = 2, . . . , n. Since for i 6= j, {ai(t), t ≥ 0}
and{aj(t) ≥ 0} are independent of each other, thus
the diagonal blocks ofE(F (t) ⊗ F (t)) are in form
of (A − (1 − αi)BK) ⊗ (A − (1 − αj)BK) and
E((A− ai(t)BK)⊗ (A− ai(t)BK)).
Consider the Bernoulli switching system (7). From

the proof of Theorem 2,ρ(A − (1 − r)BK) < 1 is
just its necessary mean square stability condition while
ρ(E((A − a(t)BK) ⊗ (A − a(t)BK))) < 1 is the
necessary and sufficient one, thus we just study when
there exists a common state feedback gainK simulta-
neously mean square stabilizingE((A − ai(t)BK) ⊗
(A − ai(t)BK)) for all i to seek for a mean square
consentability condition.
By Lemma 3, if LMIs (8)-(10) are feasible, the ob-

tained state feedback gainK = Y Q−1
1 must simulta-

neously mean square stabilize all systemsy(t + 1) =
(A − ai(t)BK)y(t) whenαi ≤ r. In the other words,
these systems are simultaneously mean square stabiliz-
able. Obviously, whenr = 0, LMIs (8)-(10) are always
solvable. Asr is increasing, LMIs (8)-(10) may be in-
feasible. Whenr = 1, system (7) is unstabilizable.
Definer∗ as that in (11), then as long asrij < r∗, the
mean square consensus problem is solvable.¤
The packet loss probability bound proposed in Theo-

rem 3 can be easily obtained by applying the LMI tool-
box in MatLabTM.
In the following, we will discuss the mean square

consentability condition of some special agent dynam-
ics.We begin with an example about double-integrator
multi-agent system.
Example 3: Consider a discrete-time multi-agent sys-

tem with second-order integrator dynamics. Comput-
ing r∗ by using (11) we obtain thatr∗ = 1. Thus under
any Bernoulli network, as long as the communication
topology has spanning trees, the mean square consen-

sus problem is solvable. This result is in accord with
that proposed in [Zhang and Tian, 2009], and thus the
probability bound given by (11) is not conservative.¤
Theorem 4: For the networked multi-agent systems

with integrator dynamics, the upper bound of packet
loss probabilities isr∗ = 1.
Proof: This can be proved by perturbation argument

and hypothetico-deductive method.
Denote A = Ip + J,B = [0, · · · , 0, 1]T ,K =

[k1, · · · , kp], whereIp is an identity matrix with di-
mension p, J is a Jordan block. If the gainK
is small enough, i.e. ki is small enough,E((A −
ai(t)BK)⊗(A−ai(t)BK)) = A⊗A−(1−αi)(A⊗
BK + BK ⊗ A) + (1 − αi)BK ⊗ BK is a pertur-
bation ofA ⊗ A by two terms depending onK, and
the latter perturbation term can be neglected compar-
ing with the former one, and thus we just consider
A ⊗ A − (1 − αi)(A ⊗ BK + BK ⊗ A) to verify
whether its spectral radius is less than 1. Meantime,
E(A−ai(t)BK)⊗E(A−ai(t)BK) is also a perturba-
tion of A⊗A by two terms depending onK. For small
enoughK, justA⊗A− (1−αi)(A⊗BK +BK⊗A)
should be considered. Therefore, if there exists a small
enoughK stabilizingE(A−ai(t)BK), it can stabilize
E((A− ai(t)BK)⊗ (A− ai(t)BK)) as well.
Denote ∆i = J − (1 − αi)BK, thus E(A −

ai(t)BK) = Ip+∆i. Under a small enoughK, as long
as∆i is Hurwitz,ρ(E(A−ai(t)BK)) < 1 holds for all
αi < 1. Sincedet(sIp−∆i) = sp +(1−αi)kps

p−1 +
· · ·+(1−αi)k2s+(1−αi)k1, by applying hypothetico-
deductive method, it can be proven that there exist
small enoughk1, . . . , kp such that all solutions lie in
the left half-plane. The detailed process is omitted here.
Therefore,ρ(E(A − ai(t)BK)) < 1 and sequentially
ρ(E((A−ai(t)BK)⊗ (A−ai(t)BK))) < 1. Similar
to the proof of Theorem 3, Theorem 4 has been proved.
¤
The above discussions focus on how to choose a lin-

ear state feedback protocol to make the system achieve
mean square consensus. For a given protocol, under
what network conditions can the system achieve mean
square consensus? By applying the results in [Hu and
Yan, 2007], the following remark can be obtained to
answer this question.
Remark 2: The proofs of Theorem 1 and Theorem 3

provide an approach to choosing connection weights.
In fact the least neighbor information is demanded in
this approach. If the gainK is given and the given com-
munication topology has spanning trees, under these
connection weights the networked multi-agent system
can achieve mean square consensus if the packet loss
probabilityrij < α, where
α = 1

µ(H) , µ(·) denotes the maximum positive eigen-
value of a matrix,

H =
[

(H1 ⊗H2 + H2 ⊗H1)H3 H2 ⊗H2

H3 0

]
,

H1 = (A−BK)⊗ (A−BK),
H2 = A⊗A− (A−BK)⊗ (A−BK),
H3 = (I −H1 ⊗H1)−1.



4 Conclusion
A general discrete-time LTI multi-agent system in a

Bernoulli network is discussed. The main contribution
of this paper is to reveal the following two facts: 1)
unlike the continuous-time LTI multi-agent systems, in
discrete-time dynamics the connection weights should
be treated as control parameters, otherwise consensus
may be unsolvable even if the topology has spanning
trees; 2) unlike the integrator case, for the general LTI
multi-agent systems the packet loss probability of net-
work is vital to consentability. A sufficient condition of
the packet loss probability bound is also obtained to en-
sure that when the mean topology has spanning trees,
the mean square consensus problem is solvable. It is
not necessary for the interaction topology to be instan-
taneously connected.
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