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Abstract
This paper is concerned with the stability analysis of

the optical QED feedback control systems in interact-
ing Fock space and a new method for generating multi-
state entangled states by designing quantum networks
of the closed optical QED cavities connected in paral-
lel. The Nyquist stability of the quantum feedback con-
trol system in the interacting Fock space using beam
splitter device has been analyzed. The generation of W,
W-class and GHZ states are discussed by constructing
respective composite networks of the optical feedback
QED cavities.
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1 Introduction
Quantum feedback analysis is increasingly being

used in designing quantum gates that includes quan-
tum components and devices [Wiseman and Milburn,
1993], [Roy and Das, 2007a], [Gardiner and Zoller,
2000]. In fact, a wide range of quantum systems can
be considered as networks of quantum and classical
devices that include feedback interactions of two or
more optical QED cavities connected in parallel. In
this paper we utilize the concept of interaction of sin-
gle mode of quantized field in a cavity with a noisy
external field for finding the state space model in inter-
acting Fock space. The dynamics of the cavity in the
interacting Fock space are obtained by utilizing the ba-
sic concepts of quantum stochastic process [Gardiner
and Zoller, 2000]. The state space model of quantum
feedback control system in interacting Fock space is
shown to be a generalization of the design of quan-
tum feedback control system of the optical cavity in
the usual boson Fock space [Yanagisawa and Kimura,
2003a], [Yanagisawa and Kimura, 2003b], [Wiseman

and Milburn, 1993], [Gardiner and Zoller, 2000]. The
stability analysis of the feedback systems using beam
splitter has been discussed by applying Nyquist stabil-
ity criterion of the open-loop system of single cavity
and the modelling of quantum networks of any num-
ber of optical feedback baths connected in parallel have
been outlined. The physical characteristics of the feed-
back control system, such as, the gain margin(GM) and
phase margin(PM) of the single and composite cavity
QED systems are expressed in terms of the parame-
ters of the beam splitter. The experimental problems
of generating W, W-class and GHZ states [Gorbachev
and Trubilko, 2006] are outlined via quantum networks
of the QED cavities connected in parallel.

2 Preliminary Concepts
In this section we discuss some basic preliminar-

ies on interacting Fock space [Accardi and Bozejko,
1998], [Das and Roy, 2006] and interaction of optical
QED cavity with the external field [Wiseman and Mil-
burn, 1993], [Gardiner and Zoller, 2000] which will be
needed throughout the paper.

2.1 Interacting Fock Space
As a vector space one mode interacting Fock space
Γ(IC) [3] is defined by

Γ(IC) =

∞⊕
n=0

IC|n⟩ (1)

where IC|n⟩ is called the n-particle subspace. The dif-
ferent n- particle subspaces are orthogonal, that is, the
sum in (1) is also orthogonal. The norm of the vector
|n⟩ is given by

⟨n|n⟩ = λn (2)



80 CYBERNETICS AND PHYSICS, VOL. 5, NO. 3

where {λn} > 0. The norm introduced in (2) makes
Γ(IC) a Hilbert space.
An arbitrary vector f in Γ(IC) is given by

f ≡ c0|0⟩+ c1|1⟩+ c2|2⟩+ . . .+ cn|n⟩+ . . . (3)

with ∥f∥ = (
∑∞

n=0 |cn|2λn)
1/2 < ∞. We assume

also that the sequence {λn} satisfies the condition
infn≥0 λ

1/n
n > 0.

We now define following actions on Γ(IC)

a†|n⟩ = |n+ 1⟩
a|n+ 1⟩ = λn+1

λn
|n⟩ (4)

a† is called the creation operator and its adjoint a is
called the annihilation operator. To define the annihi-
lation operator we have taken the convention 0/0 = 0.

The commutation relation of the operators then takes
the form

[a, a†] =
λN+1

λN
− λN

λN−1
(5)

where N is the number operator defined by N |n⟩ =
n|n⟩.

2.2 Interaction of Cavity and the External Field
We consider the interaction of an interacting single-

mode of quantized field confined in an optical cavity
with a noisy external field. Let HA and HB be Hilbert
spaces of the cavity and the external field respectively.
The composite system is expressed by the tensor prod-
uct space HA ⊗ HB. The total Hamiltonian is given
by

Htotal = HA +HB +Hint (6)

HA being described the Hamiltonian of the cavity
mode and may be further subdivided into two parts
Hcav and H . Here H is referred to as a free Hamil-
tonian determined by the optical medium in the cavity.
HB is the Hamiltonian of the external field.
After dropping the energy non-conserving terms in
Hint corresponding to the rotating-wave approxima-
tion we obtain the simplified Hamiltonian

Hint(t) = i
√
γ[a(t)b+(t)− a+(t)b(t)] (7)

with [b(t), b+(t
′
)] = δ(t− t

′
), γ being a coupling con-

stant. The operators a and b are respectively the anni-
hilation operators of the cavity and the external field.

3 States Space Model of Cavity QED via Stochas-
tic Process

In deriving the dynamics of the QED cavity in inter-
acting Fock space, let us define quantum stochastic pro-
cess by the operator

Bin(t, t0) =

∫ t

t0

bin(s)ds (8)

where the field bin(t) being the input to the cavity satis-
fies the commutation relation of section 2.2 and repre-
sents also the field immediately before it interacts with
the system.
It is easy to show that [Das and Roy, 2006], [Gardiner

and Zoller, 2000]

[dBin(t), dB
+
in(t)] = dt (9)

The relation (9) leads to the natural definition of quan-
tum stochastic process referred in [Yanagisawa and
Kimura, 2003a], [Yanagisawa and Kimura, 2003b].
The evolution of an arbitrary operator X is written

as X(t) = U+(t)XU(t) in which the unitary oper-
ator U(t) is generated by the Hamiltonian in (6). The
Hamiltonians Hcav and HB drive the cavity and the ex-
ternal field respectively. We shall assume here H to be
zero. The unitary operator of the system is then given
by

U(dt) = e
√
γ(adB+

in−a+dBin) (10)

The increment of an arbitrary operator r of the system
driven by the stochastic input bin is given by

dr(t) =
√
γ[a+dBin − adB+

in, r(t)]+

+γ
2 {(N

′
+ 1)(2a+ra− a+ar − ra+a)

+N
′
(2ara+ − aa+r − raa+)

+M [a+, [a+, r]] +M∗[a, [a, r]]}dt
(11)

The dynamical behaviour of the optical cavity in in-
teracting Fock space is now described on replacing the
general operator r(t) in equation (11) by the operator
a(t) of the QED bath. Then using the commutation re-
lations (9) and the stochastic process given in [Yanag-
isawa and Kimura, 2003a], [Yanagisawa and Kimura,
2003b] we get

da = a(t+ dt)− a(t)

= {−γ
2 (

λN+1

λN
− λN

λN−1
)a

−√
γ(λN+1

λN
− λN

λN−1
)bin(t)}dt

(12)

This implies

ȧ(t) = −γ
2 (

λN+1

λN
− λN

λN−1
)a(t)

−√
γ(λN+1

λN
− λN

λN−1
)bin(t)

(13)
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The state equation represented by (13) of the dynamics
of the cavity A in the interacting Fock space is a gen-
eralization of the well known Langevin equation of the
cavity in boson Fock space [Yanagisawa and Kimura,
2003a], [Yanagisawa and Kimura, 2003b], [Gardiner
and Zoller, 2000]. In case of boson Fock space the
commutator described in equation (5) becomes unity,
that is,

[a, a∗] =
λN+1

λN
− λN

λN−1
= Λ

′

N = 1

The dynamics of the cavity given by (13) then reduces
to the usual quantum Langevin form in boson Fock
space

ȧ(t) = −γ

2
a(t)−√

γbin(t). (14)

Due to interaction of the evolving incoming field with
the optical cavity an outgoing field is produced and is
given by

Bout(t, t0) =

∫ t

t0

bout(s)ds, (15)

bout(t) = U+(dt)bin(t)U(dt) (16)

The input-output relation after the interaction at time t
is represented [Das and Roy, 2006], using (9), by the
following equation:

bout(t) =
√
γa(t) + bin(t). (17)

We have seen that the cavity dynamics may be thought
of as an operator equation in Hilbert space. The equa-
tions (13) and (17) give the state equation and the sys-
tem output of a cavity in different modes. The state
equation of the cavity dynamics along with the output
equation can be represented with usual notation as

ȧ(t) = A
′
a(t) +B

′
bin(t)

bout(t) = C
′
a(t) +D

′
bin(t)

(18)

The dynamics of the cavity in the interacting Fock
space is a first order differential equation of the system
operators with variable space parameter Λ

′

N as coeffi-
cient.
Applying Laplace transform in (18), assuming zero

initial state of the QED bath, we get the transfer func-
tion representation of the optical QED system in inter-
acting mode as,

bout(s) = G(s)bin(s), (19)

G(s) =
s− γA

2 Λ
′

N

s+ γA

2 Λ
′
N

. (20)

We have seen that a cavity QED in interacting mode
in some way closely analogous to the classical one in
which the input and the output are described by opera-
tors in Hilbert space.

4 Stability of Feedback Control System of QED
The state space modelling of the optical QED bath in

the interacting Fock Space is taken to be the basis of
designing closed-loop feedback control system. How-
ever, the transfer function representations of quantum
feedback control experience system gain functions that
provide various valuable insight into the problems such
as, stability, gain margin and phase margin of the sys-
tems. These problems of quantum mechanical systems
can be solved by analyzing open loop transfer functions
of the feedback systems using Nyquist stability crite-
rion.
Utilizing the general procedure of classical feedback

control theory, the mathematical model of the cavity
QED system with unity feedback may be described us-
ing a quantum device, such as, beam splitter as shown
on Fig. 1.

bo(t)

b2(t)

aA

bin(t)

G(s)

b1(t)

M(s)

Figure 1. The design of the cavity QED system using beam splitter.

The two input signals bin and b1 to the beam splitter
are related to the output signals b0 and b2 by

[
b2
b0

]
=

[
α β
β −α

] [
bin
b1

]
(21)

where α and β are real, positive and satisfy α2 + β2 =
1. From the input-output relation (17) of the cavity, we
have

b1 =
√
γAaA + b0 (22)

Each signal in the cavity feedback loop can now be
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written as

b0 = β
1+αbin − α

1+α

√
γAaA

b1 = β
1+αbin + 1

1+α

√
γAaA

b2 = bin + β
1+α

√
γAaA

(23)

The closed-loop transfer function of the feedback con-
trol system with unity feedback of the optical cavity
QED using beam splitter is described as

M1(s) =
βG(s)

1 + αG(s)
(24)

The stability of the closed-loop system is characterized
by the zeros of 1 + αG(s) = 0. In this problem of
examining the stability of a complex feedback control
system there arises some difficulty in solving the char-
acteristic roots of the system. However, this problem
of complex system may easily be solved with the help
of Nyquist stability criterion.
Let us now discuss the problem of stability of the QED

system when designed as on Fig. 1 using a beam split-
ter. In this case, the Nyquist plot of G(s) with the
parameter Λ

′

N = 1 cuts the real axis at the points
E = −α + j0 and F = α + j0. As 0 < α < 1,
the stability of the closed-loop system is assured when
a beam splitter is used.
The phase margin(PM) of the feedback control system

is zero. The gain margin(GM) of the system is given
by

GM =
1

|OE|
=

1

α
> 1. (25)

In the special case of 50/50 beam splitter, α = 1√
2

.

And so, GM =
√
2. If it is expressed in decibel, then

GM = 20log10
1

|OE|
= 3.01 > 3 dB (26)

Note that the measurements of GM and PM of a closed-
loop feedback control system indicate the information
about the degree of stability of the control system.

5 Quantum Networks of Cavities Connected in
Parallel

In describing quantum network of any number of op-
tical QED baths connected in parallel, we consider a
network of two closed cavities of fields aA and aB as
shown on Fig. 2.
The initial input to the network is the field bin(t). The

outputs leaving out of the beam splitters are shown in
the figure.
In deriving the resultant transfer function H(s) of the

composite feedback system let us assume,for simplic-
ity, the reflectivity (α) and transmissivity (β) parame-
ters of all beam splitters to be the same.

bin (t) a1(t)
+

aA

b0

M1(s)

G1(s)

  +

(s)

t)

b1(s)

b1(t)

H(s)

G2(s)

M2(s)

aB

a1(s)a0

b3

_

+

b2

Figure 2. Network of two parallel QED.

For generalization we use the following notations for
computing the transfer functions of the feedback QED
system. The open-loop and closed-loop transfer func-
tions of the optical cavity A are given by

a1(s) = G1(s)a0(s), a1(s) = M1(s)bin(s), (27)

G1(s) =
s− γA

2 Λ
′

N

s+ γA

2 Λ
′
N

, M1(s) =
βG1(s)

1 + αG1(s)

The corresponding transfer functions of other cavities
are derived similarly. Using the input-output relation
defined by (21) of the beam splitter we get

b1(s) = G2(s)b0(s), b1(s) = M2(s)b2(s), (28)

G2(s) =
s− γB

2 Λ
′

N

s+ γB

2 Λ
′
N

, M2(s) =
βG2(s)

1 + αG2(s)

Therefore the output of the second bath is given by

b1(s) = {M2(s)[α+ βM1(s)]}bin(s) (29)

Then the resultant transfer function of the output a2(s)
to the input bin(s) of the composite network of two
baths connected in parallel is computed using an opto-
coupler (Σ) as

a2(s) = a1(s) + b1(s)
= H(s)bin(s),

(30)

H(s) = M1(s) +M2(s)[α+ βM1(s)] (31)

In a similar way we can compute by means of op-
tocoupler the resultant transfer function of the closed
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network of n parallel baths and represent as

H(s) ≡ {M1(s) +M2(s)[α+ βM1(s)]
+ . . .+Mn(s)[α+ βM1(s)].
. . . [α+ βMn−1(s)]}

(32)

The stability of the quantum network of composite
cavities follows from the stability of the individual
baths.
An application of the quantum networks of the optical

QED cavities is outlined in the following section by
generating W, W-class and GHZ states.

6 Generation of |W >, W -class and |GHZ >
States

The most experimental demonstration of entangle-
ment of quqbits require nonclassical devices and corre-
lated measurements of simple photon detection events.
Many nonclassical features of three or more photon ab-
sorptions have been described including an enhanced
rate of photon absorption when the incident photons
are entangled. The fact that the photons are incident on
any given atom in a QED cavity at the same type while
their total energy is still well defined giving rise to the
rate of photon absorption.
For constructing entangled states we use a number of

optical QED baths connected in parallel. The initial in-
put to the quantum network of parallel baths is the field
bin(t). The outputs leaving out of the beam splitter are
shown in generating the respective entangled states in
different figures.Finally performing concatenation first
and then superposition via optocoupler of the output of
the beam splitter and system outputs of the cavities A,
B and C, as shown on the figure, we can generate the
W state and GHZ state.

bin (t)
a1(t)+

aA

b0

M1(s)

G1(s)

ac
D

D

D

W

b1(s)

M2(s)

G2(s) b1(t)

aB

a1(s)a0

b3

_

+

b2

Figure 3. Generation of W state.

The W state is an entangled state of three qubits and
we thus require three QED baths whose total energy ~w
as shown on Figure 2. If a photon is the input source,
it is injected either in the first bath A where a photon
is detected and the other two baths B and C are empty
and so we get the state |100 > by concatenation of three

baths, or in other baths we then get the states |010 >
or |001 >. Then finally taking superposition rules by
means of optocoupler we get the W state which is

|W >=
1√
3
(|100 > +|010 > +|001 >)

.
Again for generating W-class let us also put a beam

splitter in the last cavity of Fig. 3. If at the outputs
of the cavities we do not observe any photons then the
code |000 > is generated. In other cases we can com-
pute as explained in case of W state the states |100 >,
|010 > and |001 >. In the extreme case, if the photon
is going out through the output of the last beam splitter
of bath C then to generate the nonzero weighted code
we take the output of the beam splitter of bath C and
the output of the other two baths. Then taking super-
position by means of optocoupler of the concatenated
states we get the state of W-class as

|W >= a1|000 > +a2|100 > +a3|010 > +a4|001 >

where a21 + a22 + a23 + a24 = 1.

A

B

C

Figure 4. Generation of GHZ state.

The generation of GHZ state may be discussed as fol-
lows. Let us assume that all the outputs of the beam
splitters contain three photons. If not, in case of a
bath, then the output of that bath contains the pho-
ton. We then concatenate the output of the bath and the
outputs of other two beam splitters yielding the state
|111 >. Then the outputs of the baths generate the state
|000 > by concatenation. Finally taking superposition
by means of optocoupler of these states as in W state
we get the GHZ state as

|GHZ >=
1√
2
(|111 > +|000 >)

.
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7 Conclusion
This study mainly explores the input-output relation

of the cavity in noisy stochastic field and the modelling
of quantum network of optical QED cavities and the
stability analysis of feedback QED cavities in interact-
ing Fock space. As an application we outlined the gen-
eration of entangled W , W -class and GHZ states us-
ing the photonic device optocoupler.
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