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Abstract
For the introduced class of dynamical systems with im-

pact interactions, local singularities (six types) are deter-
mined. Properties that allow us to prove the topological
equivalence of these singularities are described for them.
A number of unsolved problems are formulated, which
are adjacent to the problems considered in the article.
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1 Introduction
The author dedicates this article to the memory of Pro-

fessor Ilya Israelevich Blekhman, who showed an exam-
ple of attitude to person and science with his life. He was
the author of completely unexpected ideas. For example
[Blekhman, 2012], where the definition of ”oscillatory
strobodynamics” is given as an interdisciplinary field of
knowledge that explores the slow component of system
dynamics in the presence of high-frequency oscillations
in engineering, natural science and sociology systems.

The author is especially grateful to I. I. Blekhman for
his cordial attitude [Blekhman, 2020] to the memory of
Yu. I. Neymark, my teacher.

It was Yu. I. Neymark who performed the first work
[Neimark, 1953] on the qualitative theory of vibro-
impact systems. It is still referred to by researchers.
Currently, researchers engaged in the study of vibro-
impact systems, i.e. when impacts are added to the ac-
tion of vibrations (the results of the impact of vibrations
on technical systems are described in the monograph
[Blekhman, 2018]), are busy:

methods for calculating vibro-impact systems (for ex-
ample, [Astashev and Krupenin, 2016; Blekhman and

Sorokin, 2016; Burd and Krupenin, 2016, etc.]);
development of models, methods of synthesis and

analysis of dynamics vibro-impact systems of various
types (for example, [Blekhman et al., 2018; Blekhman
et al., 2021; Markeev and Sukhoruchkin, 2016, etc.]).

For a detailed presentation of the theory of vibro-
impact systems and its current state, the interested reader
is recommended, for example, the book [Dinamika,
2015].

From the point of view of studying local qualitative
singularities of dynamical systems with impact interac-
tions, the following is done. In [Denisov et al., 1973] (for
a specific system) and in [Fedosenko, 1976] (for a non-
autonomous dynamical system of a general type with a
direct impact described by the Newton hypothesis), the
structure of the phase space in the vicinity of a local sin-
gularity of a certain kind (as will be indicated below, of
the fifth type) is established.

In [Gorbikov, 1987], six types of local qualitative sin-
gularities of dynamical systems with impact interactions
of a general form are introduced.

In [Gorbikov and Neimark, 1981; Gorbikov, 1998;
Gorbikov, 2020], a description of infinite-impact mo-
tions (for certain types) is given using smooth differen-
tial equations. Infinite-impact motions are motions with
an infinite number of impact interactions over a finite pe-
riod of time [McMillan V.A., 1951, p. 291; Feigin, M.I.,
1967; Nagaev, R.F., 1985]

In [Gorbikov, 1998-2; Gorbikov, 2001], the topolog-
ical equivalence of local qualitative singularities of the
five selected types was established.

On the other hand, the conditions that make it possible
to prove such an equivalence are only those conditions
that should be studied. Therefore, in this paper, we ana-
lyze and present those conditions that allowed us to es-
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tablish the topological equivalence of the last five types
and another type (the topological equivalence of which
has been proved, but not published).

2 The class of dynamical systems under considera-
tion

It is assumed [Gorbikov and Neimark, 1981] that in-
stantaneous impact interactions occur on the hypersur-
face xn = 0, after reaching which the phase variables
x1, x2, . . . , xn−1 changes abruptly (the variable xn re-
mains equal to zero) according to the formulas

x̄1 = H1 = x−1 H11(x−1 , . . . , x
−
n−1),

x̄i = Hi(x
−
1 , . . . , x

−
n−1) = x−i +

+x−1 H1i(x
−
1 , . . . , x

−
n−1), i = 2, n− 1,

(1)

and for xn > 0, the change in the phase variables obeys
differential equations of the form

dxi
dt

= ẋi = Φi(x1, . . . , xn), i = 1, n− 1,

dxn
dt

= ẋn = Φn(x1, . . . , xn) =

= x1Φn1(x1, . . . , xn) + xnΦnn(x1, . . . , xn).

(2)

The phase space of the system is points (x1, . . . ,
xn−1, xn ≥ 0). In the relations (1): x−1 , . . . , x

−
n−1 and

x̄1, . . . , x̄n−1 are the pre-impact and post-impact values
of the variables, respectively.

The following conditions are met: −1 < H11(0, x−2 ,
. . . , x−n−1) ≤ 0; H11(x−1 , x

−
2 , . . . , x

−
n−1) ≤ 0;

Φn1(x1, . . . , xn−1, 0) > 0; t− time. Functions
H1j , j = 1, n− 1, are defined and are smooth of
class Cm, m ≥ 5, in small neighborhoods of points
(x−1 ≤ 0, x−2 , . . . , x

−
n−1) spaces Rn−1, and functions

Φj , j = 1, n− 1, Φn1, Φnn are defined and are smooth
of class Cm in small neighborhoods of points (x1, . . . ,
xn−1, xn ≥ 0) of the space Rn.

It should be noted that the specific form of equations
(2) and the condition of the inequality type on the func-
tion Φn1 only means that:

1) on the hypersurface xn = 0, according to (2),

ẋn = x1Φn1(x1, . . . , xn−1, 0); (3)

2) therefore, the phase trajectories of the system (2)
at x1 = 0 they touch the hypersurface xn = 0, as
the time t increases, they leave the points (x1 > 0,
x2, . . . , xn−1, xn = 0), and as the time t decreases,
they leave the points (x1 > 0, x2, . . . , xn−1, xn = 0).
(x1 < 0, x2, . . . , xn−1, 0) (Figure 1). In Figure 1, solid
lines the trajectories of the system are indicated (2), and
the dotted lines connect the points and their images when
displayed (1).

Here we have replaced: the impact hypersurface S = 0
with the condition xn = 0.

The specified form (1) of impact interactions implies
only that when the hypersurface xn = 0 is reached by the

phase trajectory with the rate of change the last variable
equal to ẋn = 0 impact interactions do not change the
values of the phase variables (because by virtue of (3)
the condition ẋn = 0 implies the equality x1 = 0), and
the conditions in the form of inequalities on the function
H11 mean the loss of the absolute value of the rate of
change of the variable xn after impact interactions .

Therefore, the equations of motion of many mechan-
ical systems with a single impact pair are presented in
this way.

Figure 1. Possible behavior of phase trajectories in the vicinity of the
hypersurface xn = 0.

In the future, the following types [Gorbikov, 1987] of
local qualitative singularities of M∗ dynamical systems
of the form (1) - (2).

The first type. At the point M∗ takes place xn = 0,
ẋn < < 0 (here ẋn = Φn(x1, . . . , xn)).

The second type. At the pointM∗ takes place xn = 0,
ẋn > 0.

The third type. At the point M∗ is valid xn =

0, ẋn = = 0, ẍn > 0 (here ẍn =

n∑
k=1

∂Φn

∂xk
Φk).

The fourth type. At the point M∗ is valid xn = 0,
ẋn = 0, ẍn < 0.

The fifth type. At the point M∗ takes place xn =
= 0, ẋn = 0, ẍn = 0, x

′′′

n > 0 (here x
′′′

n =

=

n∑
j=1

∂

∂xj
(

n∑
k=1

∂Φn

∂xk
Φk)Φj).

The sixth type. At the point M∗ takes place xn =
0, ẋn = = 0, ẍn = 0, x

′′′

n < 0.
More degenerate cases (when at the point M∗ the first

nonzero derivative of the function xn describing the im-
pact manifold is the fourth or even higher) are not con-
sidered here.
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3 The first three types of local qualitative singulari-
ties

Consideration of the first three types of local singular-
ities [Gorbikov, 1998-2] is not difficult.

To prove the topological equivalence of local quali-
tative singularities of First type, it is only necessary to
know that:

1) the same value of n (this is necessary for all types
of local qualitative singularities, so this requirement will
be implied everywhere else, but not mentioned);

2) exists a sufficiently small neighborhood Ω of this
point (in the phase space of the system (1) - (2)).
Through any point Ω at xn > 0 passes a phase trajectory
that leads (in a fairly short period of time) a phase point
to the impact manifold xn = 0. Due to the impact inter-
actions that then act, the phase point leaves the selected
small neighborhood Ω.

(In Figure 1, a singularity of this type corresponds, for
example, to the point M1).

To prove the topological equivalence of local qualita-
tive singularities of Second type, it is only necessary to
know that:

there is a sufficiently small neighborhood Ω of a point
M∗ in the phase space of the system (1) - (2), such that at
the points of the set Ω0 = Ω∩{(x1, . . . , xn)|xn = 0} the
phase points fall from the points of the set ẋn < 0, xn =
= 0. At the points of the set Ω0, the phase trajectories
of the system (2) go to the region xn > 0. They make up
the entire set Ω.

(In Figure 1, a singularity of this type corresponds, for
example, to the point M2).

To prove the topological equivalence of local qualita-
tive singularities of Third type, it is only necessary to
know that:

there is such a sufficiently small neighborhood Ω of a
point M∗ in the phase space of system (1) - (2), which
is the set of trajectories of system (2) that exit with in-
creasing and decreasing t from the points of the set
{xn = 0, ẋn = Φn(x1, . . . , xn) = 0(x1 = 0)} = Ω0

0,
is divided into two parts: the phase trajectories from the
1st part pass in the region of Ω without crossing the hy-
persurface of the impact, and the phase trajectories from
the 2nd part are sections of the phase trajectories of the
system (2), which lead the phase points to the hypersur-
face of the impact at ẋn < 0, xn = 0, then the strength
of impact interactions (1) phase points go into points of
the set xn = 0, ẋn > 0, then the phase point overlook in
the area of xn > 0 along the trajectories of system (2).

(In Figure 1, a singularity of this type corresponds, for
example, to the point M3).

4 The fourth type of local qualitative singularities
As it was established in [Gorbikov, 1998-2]: the entire

sufficiently small neighborhood Ω of the point M∗ (the
local qualitative singularity of the fourth type) is filled
with infinite-impact motions.

The trajectory of an infinite-impact motion exiting at
xn = 0 from a point M(x1 > 0, x2, . . . , xn−1), leaves a

” trace ” of an infinite number of points on the manifold
xn = 0, x1 > 0

Mj = T j(M), j = 1, 2, 3, . . . , (4)

Here is a point map T = T2T1 of a part of the manifold
xn = 0, x1 ≥ 0 into yourself. The mapping T1 trans-
lates the point (x1 ≥ 0, x2, . . . , xn−1, 0) to the point
(x1 ≤ 0, x2, . . . , xn−1, 0) along the trajectories of the
system (2); T2 is the mapping given by the formulas (1)
of impact interactions.

In [Gorbikov and Neimark, 1981], the following theo-
rem is proved on the description of these motions using
smooth differential equations.

Theorem. All points of the ” trace ” (4) lie on the inte-
gral curve of the system of differential equations passing
through M

dxi
dx1

= fi(x1, . . . , xn−1), i = 2, n− 1, (5)

where the functions fi is defined when x1 ≥ 0, fi ∈
∈ Cm−2.

The solutions of the system (5) give an idea of the ”
trace” infinite-impact motions on the manifold xn = 0
at x1 ≥ 0. Therefore, the integral curves of the system
(5) are further called auxiliary sliding movements.

In Figure 2, a singularity of such a type corresponds,
for example, to the points M∗ and M∞. (The point M∞
is the limit point of the trace (4), which belongs to the
manifold xn = 0, x1 = 0).

Figure 2. The behavior of phase trajectories in the vicinity of local
qualitative singularities of the fourth type. The phase trajectories of
auxiliary sliding movements are highlighted in green

The arguments of [Gorbikov, 1998-2] lead to the fol-
lowing conclusion: the fourth type for the proof of topo-
logical equivalence requires only the representation
of infinite-impact motions by means of smooth differ-
ential equations (5).



78 CYBERNETICS AND PHYSICS, VOL. 10, NO. 2, 2021

5 The sixth type of local qualitative singularities
To simplify the consideration, you can move the point

M∗ (a local qualitative singularity of the sixth type) to
the origin. In addition, the points of the manifold xn =
= 0, x1 = 0, x2 > 0 are points of the third type, and
the points of the manifold xn = 0, x1 = 0, x2 < 0 are
points of the fourth type.

As shown in [Gorbikov, 2020], the following is true.
Statement 1.
1) The entire sufficiently small neighborhood of the

Ω point M∗ (a local qualitative singularity of the sixth
type) is filled with infinite-impact motions, and all phase
points fall on the manifold xn = 0, x1 ≥ 0 (therefore,
the behavior of the phase points of the set Ω can be char-
acterized by considering the behavior of the points of the
set xn = 0, x1 ≥ 0);

2) all points lying between the points of the set xn =
= 0, x1 = 0, x2 ≥ 0 and the points of the set ν1 fall
under the action of mapping T to the points of the set
lying between the points of the sets ν1 and ν2 = T (ν1).

Here the set ν1 is the image of the set xn = 0, x1 =
= 0, x2 ≥ 0 under the mapping action T (Figure 3). The
form of the sets ν1, ν2 is specified in [Gorbikov, 2020]
and is clear from Figure 3.

Figure 3. The behavior of phase trajectories in the vicinity of a local
qualitative singularity of the sixth type. The phase trajectory of the
auxiliary sliding movements is highlighted in green

Further, the equations of auxiliary motions act on the
manifold xn = 0, x1 ≥ 0, x2 < 0. Their appearance
changes in comparison with (5), and is given in [Gor-
bikov, 2020].

The arguments of [Gorbikov, 2001] lead to the follow-
ing conclusion: the sixth type for the proof of topo-
logical equivalence requires only the representation
of infinite-impact motions by means of these smooth
differential equations and statement 1.

6 The fifth type of local qualitative singularities
To simplify the consideration, you can move the point

M∗ (a local qualitative singularity of the fifth type) to
the origin. In addition, the points of the manifold xn =
= 0, x1 = 0, x2 > 0 are points of the third type, and
the points of the manifold xn = 0, x1 = 0, x2 < 0 are
points of the fourth type.

Consideration of a singularity of this type can be car-
ried out by studying the behavior of phase points that lie
on the manifold xn = 0, x1 ≥ 0.

Statement 2. All points that lie between the set {xn =
= 0, x1 = 0, x2 > 0} and the set γ1 come from a small
neighborhood Ω of the pointM∗ (a local qualitative sin-
gularity of the fifth type).

(Here γ1 is a set whose points fall into the points of the
set {xn = 0, x1 = 0, x2 ≥ 0} under the inverse mapping
action T−1).

Statement 3. All points lying between the set γn+1

and the set γn, after n impacts, come out of the small
neighborhood Ω of the point M∗.

The set γ∗ is limiting for infinite iterations of the map-
ping T−1.

Here γn+1 = T−n(γ1) - consecutive images of the set
γ1 under the mapping action T−1.

The type of sets γ1, γ2,... is specified in [Gorbikov,
1998] and is clear from Figure 4.

Figure 4. The behavior of phase trajectories in the vicinity of a lo-
cal qualitative singularity of the fifth type. The phase trajectories of
auxiliary sliding movements are highlighted in green

At the points of the set Ω that lie on the manifold
xn = 0 between points xn = 0, x1 = 0, x2 < 0 and the
points γ∗ (including at points of the set γ∗) operate the
auxiliary equation of motion. Their appearance changes
in comparison with (5), and is given in [Gorbikov, 1998].

As proven (but not published): the fifth type of lo-
cal qualitative singularities (for the proof of topologi-
cal equivalence) requires only the representation of
infinite-impact motives by means of these smooth dif-
ferential equations and statements 2 and 3.
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7 Conclusion
Next, we will formulate a number of unsolved prob-

lems that are related to the tasks studied here.
I. Study of more degenerate cases than those described

here.
II. Classification and study of local features of dynami-

cal systems with shock interactions, which are described
by mathematical models other than those discussed here.

III. Classification and study of bifurcations of peri-
odic motions, dynamical systems with shock interactions
leading to the appearance of chaotic motions.

IV. Study of specific, frequently encountered dynamic
systems with shock interactions, by identifying the main
steady-state movements; indications of those of them
that have significant areas of existence in the parameter
space, as well as those on which the optimal operating
modes of the original technical devices are achieved.
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