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Abstract
An optimal control problem of a first-order hyperbolic

system is studied, in which a boundary condition at one
of the ends is determined from a controlled system of
ordinary differential equations with constant state lag.
Control functions are bounded and measurable func-
tions. The system of ordinary differential equations at
the boundary is linear in state. However the matrix of
coefficients depends on control functions. Therefore, the
optimality condition of Pontryagin’s maximum principle
type in this problem is a necessary, but not a sufficient
optimality condition. In this paper, the problem is re-
duced to an optimal control problem of a special sys-
tem of ordinary differential equations. The proposed ap-
proach is based on the use of an exact formula of the
cost functional increment. The reduced problem can be
solved using a wide range of effective methods used for
optimization problems in systems of ordinary differen-
tial equations. Problems of this kind arise when mod-
eling thermal separation processes, suppression of me-
chanical vibrations in drilling, wave processes and pop-
ulation dynamics.
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1 Introduction
Delay differential equations are a special kind of dif-

ferential equations in which an unknown function and its
derivatives enter at different values of the argument. The
delay can be due to a variety of reasons, for example,
the presence of inertia of dynamic systems, the limited
velocity of processes, etc.

The study of optimal control problems for delay sys-
tems began almost immediately after the first results

in the optimal control theory of classical dynamical
systems were obtained. In 1961, G. L. Kharatishvili
[Kharatishvili, 1961] generalized the Pontryagin’s maxi-
mum principle to the case of processes with delay. A lit-
tle bit later, R. Gabasov and S. V. Churakova [Gabasov,
1967] proved the existence of optimal controls in the
control problem for a system of ordinary differential
equations (ODEs) with delay argument. In [Frankena,
1975], a general optimal control problem was consid-
ered, which includes differential equations with delay
argument, under restrictions on both phase and control
variables. The necessary optimality conditions were ob-
tained, in which the Lagrange multipliers appear. In
2011, G. V. Bokov [Bokov, 2011] formulated an opti-
mal control problem that contains a constant time delay
both in the phase variable and in the control variable, and
also proved the necessary optimality condition using the
needle variation, substantiated the maximum principle
in a problem with an infinite time interval. An interest-
ing modern area of research is a design of identifiers for
systems with a known and unknown time-delays [Furtat,
2020].

The study of optimal control problems for partial dif-
ferential equations with delay mainly follows the path
of applying the approaches developed earlier for ODEs.
Here we can note the results in the field of existence and
uniqueness [Teo, 1979], optimality conditions like the
maximum principle [Sadek, 1990], numerical methods
[Mai, 2017].

This article considers an optimal control of a first-order
hyperbolic system, in which the boundary condition at
one of the ends is determined from a controlled sys-
tem of ODEs with a constant state delay. Problems of
this kind arise when modeling thermal separation pro-
cesses [Demidenko, 2006], suppression of mechanical
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vibrations in drilling [Bresch-Pietri, 2016], wave pro-
cesses [Souhaile, 2021] , population dynamics [Piazzera,
2004], etc. Admissible controls are bounded and mea-
surable functions. The system of ODEs on the boundary
is linear in state, but the matrix of coefficients at phase
variables depends on control functions. Therefore, the
optimality condition of Pontryagin’s maximum princi-
ple type in this problem is a necessary but not sufficient
optimality condition. In this regard, the same methods
are usually applied to solve such problems as for general
nonlinear optimal control problems.

The main result of the work is in reduction of the orig-
inal problem to the optimal control problem of a sys-
tem of ODEs. The proposed approach is based on the
use of an exact (without remainder terms) increment for-
mula of the cost functional. The corresponding state-
ment is formulated as a variational optimality condition.
An example illustrating the reduction process is given.
Note that the reduced problem has the following struc-
ture. The control system is linear in state, but the matrix
of coefficients at phase variables depends on the con-
trol functions. The reduced problem can be solved using
a wide range of efficient methods used for this class of
optimal control problems in systems of ODEs. This ap-
proach was proposed in [Arguchintsev, 2021] for classic
optimal control problems with fixed boundary conditions
and without delay. Two symmetric variational conditions
were proved. Delay parameters lead to only one varia-
tional optimality condition.

2 Problem statement
We consider a system

xt +A(s, t)xs = Φ(s, t)x+ f̄(s, t), (1)

(s, t) ∈ Π, Π = S × T, S = [s0, s1], T = [t0, t1].

Here x = x(s, t) is n− dimensional vector-function,
A = A(s, t) is a matrix of order (n × n), We suppose
that system (1) is written in an invariant form, that is A
is a diagonal matrix. Diagonal elements ai(s, t) of A are
of constant sign in Π:

ai(s, t) > 0, i = 1, 2, . . . ,m1;

ai(s, t) = 0, i = m1 + 1,m1 + 2, . . . ,m2;

ai(s, t) < 0, i = m2 + 1,m2 + 2, . . . , n.

We consider two subvectors

x+ = (x1, . . . , xm1
), x− = (xm2+1, . . . , xn),

which correspond to the positive and negative diagonal
elements of matrix A.

Let us introduce the initial-boundary conditions for the
hyperbolic system (1). Note that the boundary condition
at s = s0 is determined from a controlled system of lin-
ear ordinary differential equations with a constant state
delay.

dx+(s0, t)

dt
= N(u(t), t)x+(s0, t−α)+b(u(t), t), (2)

x(s, t0) = x0(s), s ∈ S, x−(s1, t) = ν(t), t ∈ T,

x+(s0, t) = q(t), t ∈ [−α; t0]; α > 0,

where α is a constant delay.
We consider bounded and measurable r - dimensional

control vector functions u(t) on T satisfying almost ev-
erywhere the inclusion-type restrictions

u(t) ∈ U ⊂ Er, t ∈ T, (3)

U is a compact set.
It is required to find an admissible control that delivers

a minimum to the objective functional

J(u) =

∫
s

⟨c(s), x(s, t1)⟩ds, u ∈ U. (4)

Here ⟨, ⟩ means a classic scalar product in a finite-
dimensional Euclidean space of a corresponding dimen-
sion.

The problem (1) – (4) is considered under the follow-
ing assumptions.

1) Diagonal elements ai(s, t) of matrix A are continu-
ous and continuously differentiable in Π.

2) Functions x0(s), ν(t), q(t) are continuous on S
and T , respectively, and satisfy the matching conditions

ν(t0) = (x0(s1))
−, q(t) = (x0(s0)

+.

3) Functions Φ(s, t), f̄(s, t), N(u, t), b(u, t) and
c(s) are continuous in aggregate of its arguments on
S × T, S × T,U × T,U × T and S, respectively.

For any admissible control, there is a unique general-
ized solution of the initial-boundary value problem (1) –
(2), which is continuous in Π function [Rozhdestvensky,
1968] (pp. 63–69, 90–94). Each component of the so-
lution xi, i = 1, 2, . . . , n, is continuously differentiable
along the characteristics of (1). The continuity of the so-
lution is guaranteed by above assumptions on the param-
eters of the problem and the matching conditions. These
conditions do not guarantee existence of a classical so-
lution in the rectangle Π. This requires the fulfillment of
higher-order matching conditions closely related to the
hyperbolic system itself [Godunov, 1979]. Thus, instead
of the left side of (1) we will consider a differential op-
erator(

dx

dt

)
A

=

((
dx1
dt

)
A

,

(
dx2
dt

)
A

, . . . ,

(
dxn
dt

)
A

)
,



CYBERNETICS AND PHYSICS, VOL. 11, NO. 2, 2022 63

where (dxi/dt)A are derivatives of the corresponding
state vector component along the corresponding family
of characteristics.

Note that the above assumptions are not sufficient for
existence and uniqueness of optimal control problem (1)
– (4) solution. However our aim is not in solving this
problem but it is in reduction to an optimal control prob-
lem for a system of ODE equations.

3 Variational optimality condition
The problem under consideration is a linear one with

respect to x. However the classical Pontryagin’s maxi-
mum principle is not a sufficient optimality condition in
this problem. This is explained by the dependence of the
matrix of coefficients N(u, t) in (2) on controls. There-
fore, to solve such problems, methods developed for the
general nonlinear case are usually used. In this paper,
we use the technique previously applied in [Arguchint-
sev, 2021] for problems without lag parameters.

Consider two arbitrary different admissible processes:
{u, x} and {ũ = u + △u, x̃ = x + △x}. Let’s write a
system in increments(

d△x
dt

)
A

= Φ(s, t)△x,

△x+(s0, t) = 0, t ∈ [−α; t0]; △x(s, t0) = 0, s ∈ S,

△x−(s1, t) = 0, t ∈ T ;

△x+t (s0, t) = N(ũ, t)x̃+(s0, t− α)

−N(u, t)x+(s0, t− α) +△b(u, t),
(5)

△b(u, t) = b(ũ, t) − b(u, t). We apply the following
representation for the right side of (5):

△x+t (s0, t) = △ũN(u, t)x̃+(s0, t− α)

+N(u, t)△x+(s0, t− α) +△b(u, t),

where △ũN(u, t) = N(ũ, t) − N(u, t). We write the
increment of functional in the form

△J(u) = J(ũ)− J(u) =

∫
S

⟨c(s),△x(s, t1)⟩ds. (6)

In formula (6), we add zero terms∫
Π

∫
⟨ψ(s, t),

(
d△x
dt

)
A

− Φ(s, t)△x⟩dsdt,

∫
T

⟨p(t),△x+t (s0, t)−△ũN(u, t)x̃+(s0, t− α)

−N(u, t)△x+(s0, t− α)−△b(u, t)⟩dt,

where ψ(s, t), p(t) are while arbitrary vector func-
tions of dimension n and m1, respectively, having the
same analytic properties as the corresponding functions
x(s, t), x+(t).

Integrating by parts we obtain

△J(u) =
∫
S

⟨c(s),△x(s, t1)⟩ds

+

∫
S

[⟨ψ(s, t1),△x(s, t1)⟩ − ⟨ψ(s, t0),△x(s, t0)⟩]ds

−
∫
Π

∫
⟨
(
dψ

dt

)
A

+Asψ,△x(s, t)⟩dsdt

+

∫
T

[⟨ψ(s1, t), A(s1, t)△x(s1, t)⟩

−⟨ψ(s0, t), A(s0, t)△x(s0, t)⟩]dt

+⟨p(t1),△x+(s0, t1)⟩ − ⟨p(t0),△x+(s0, t0)⟩

−
∫
T

⟨pt,△x+(s0, t)⟩dt

−
∫
Π

∫
⟨ψ(s, t),Φ(s, t)△x⟩dsdt

−
∫
T

⟨p(t),△ũN(u, t)x̃+(s0, t− α)

+N(u, t)△x+(s0, t− α) +△b(u, t)⟩dt.

Here we use a generalized integration by parts formula
for the term∫

Π

∫
⟨ψ(s, t),

(
d△x
dt

)
A

− Φ(s, t)△x⟩dsdt.

This formula is used for the generalized solution concept
in [Potapov, 1983].

Next, consider the following expression:∫
T

⟨p(t), N(u, t)△x+(s0, t− α)⟩dt

=

∫ t0

t0−α

⟨p(τ + α), N(u(τ + α), τ + α)△x+(s0, τ)⟩dτ
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+

∫ t1−α

t0

⟨p(τ+α), N(uu(τ+α), τ+α)△x+(s0, τ)⟩dτ.

Here τ = t − α, τ ∈ [t0 − α, t1 − α]. Let’s return to
variable t. Taking into account the fact that the first term
of this expression is equal to zero, we get∫

T

⟨p(t), N(u, t)△x+(s0, t− α)⟩dt

=

∫ t1−α

t0

⟨p(t+ α), N(u(t+ α), t+ α)△x+(s0, t)⟩dt.

We require that the functions ψ(s, t), p(t) be solutions
of the following adjoint problems(

dψ

dt

)
A

+Asψ = −ΦT (s, t)ψ, ψ(s, t1) = −c(s),

ψ+(s1, t) = 0; ψ−(s0, t) = 0, t ∈ T ;
(7)

pt =


−NT (u(t+ α), t+ α)p(t+ α)− ψ(s0, t),

t ∈ [0; t1 − α],

−ψ(s0, t), t ∈ [t1 − α; t1];
(8)

p(t1) = 0; p(t) ≡ 0, t > t1.

HereA+(s, t) is a diagonal submatrix ofA, composed of
its positive elements, ψ+ is a subvector of ψ, composed
of its first m1 components. Then the formula for the
increment of the functional takes the form

△J(u) = −
∫
T

⟨p(t),△ũN(u, t)x̃+(s0, t− α)

+△b(u, t)⟩dt.
(9)

(9) is the exact increment formula (without remainder
terms) for any pair of admissible processes, while the
original ODE system (2) is integrated on the perturbed
control.

The resulting increment formula allows us to reduce
the original problem of optimal control of a hyperbolic
system to the optimal control problem for the system of
ODEs

I(v) = −
∫
T

⟨p(t, u), N(v(t), t)

−N(u((t), t))z(t− α, v)

+b(v(t), t)− b(u(t), t)⟩dt→ min,

(10)

ż = N(v(t), t), z(t− α) + b(v(t), t), t ∈ T ;

z(t) = 0, t ∈ [t0 − α, t0]; v(t) ∈ U.
(11)

This result enables us to formulate a new variational
optimality condition (as opposed to traditional finite-
dimensional optimality conditions).

Theorem. A control u∗(t) is optimal in the problem
(1)–(4) if and only if the function v∗ = u∗(t) is optimal
in problem (10) – (11) for any fixed admissible u(t).

It follows from (9) that the optimal value of the func-
tional in the original problem is given by

J(v∗) = J(u) + I(v∗).

Note that the proved theorem is true for any fixed ad-
missible function u(t). It is due to the fact that the in-
crement formula has been proved for an arbitrary pair
of admissible controls. We did not use any local control
variations.

4 Reduction scheme
The following solution scheme based on the theorem

can be proposed.
1. An arbitrary initial admissible control u = u(t) is
specified. Then we calculate a solution p = p(t, u) of
adjoint problems (7) – (8) corresponding to this control.
2. We solve an auxiliary optimal control problem (10) –
(11) for the system of ordinary differential equations. Its
solution will be a solution of the problem (1) – (4).

The following example illustrates this reduction
scheme.

In Π = S × T = [0; 4]× [0; 4] we consider an optimal
control problem

x1t + x1s = (s+ 2) cos t,

x2t − 2x2s = x2 − 2es,

x1t(0, t) = u · x1(0, t− 1), u(t) ∈ U = [0, 2];

x1(0, t) = 0, 2 · t, t ∈ [−1; 0];

x2(4, t) = t2, x1(s, 0) = 0, x2(s, 0) = s− 4;

J(u) =

∫
S

[2x1(s, 4) + 3x2(s, 4)] ds→ min, u ∈ U.

Here

Φ(s, t) =

(
0 0
0 1

)
, N(u, t) = u, b(u, t) = 0.
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Adjoint problems (7)–(8) have the following form:

ψ1t + ψ1s = 0, ψ2t − 2ψ2s = −ψ2,

ψ1(s, 4) = −2, ψ2(s, 4) = −3,

ψ1(4, t) = 0; ψ2(0, t) = 0;

pt =

{
−p(t+ 1) · u(t+ 1)− ψ1(0, t), t ∈ [0; 3),

−ψ1(0, t), t ∈ [3; 4],

p(4) = 0.

We choose an admissible control u(t) ≡ 0 for all t ∈
[0, 4].

Then we solve (7) – (8):

ψ1(s, t) =

{
0, t < s,

−2, t ≥ s.

p(t) = 2t− 4, t ∈ [0; 4].

The problem is reduced to the following optimal control
problem:

I(v) =

4∫
0

(4− 2t) · v(t) · z(t− 1, v) dt→ min,

zt = v ·z(t−1), z(t) = 0, 2 ·t, t ∈ [−1; 0], z(0) = 0;

v(t) ∈ [0; 2].

For solving the reduced optimal control problem, one
can use a wide set of modern optimal control methods
(for example, see reviews [Golfetto, 2012; Biral (2016);
Srochko (2021)]).

5 Conclusions
We considered an optimal control problem by a special

type of hyperbolic equations containing delay parame-
ters in boundary conditions. The proposed approach al-
lows to reduce this problem to an optimal control prob-
lem by a system of ordinary differential equations. Our
further goal is to extend this approach to the case of
quadratic cost functionals.
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