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Abstract
In the paper the adaptive synchronization of chaotic

Lorenz systems over the limited capacity digital com-
munication channel is described and its application
to information transmission, based on chaotic source
modulation, is demonstrated. The simulation results
for video signal transmission are presented.
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1 Introduction
Starting from the works by [Pecora and Carroll, 1990;

Rulkov and Tsimring, 1999; Boccaletti et al., 2002;
Lau and Tse, 2003; Xia et al., 2004], to mention a few,
the synchronization of chaotic systems becomes one of
the most topical field of research in nonlinear sciences
due to its various potential applications in secure com-
munication, chemical and electrical engineering, infor-
mation processing, etc., see [Andrievskii and Fradkov,
2004] for a survey. In [Yang Wu and Chua, 1996; Frad-
kov et al., 2000; Fradkov et al., 2002] various methods
of the adaptive synchronization of chaotic systems are
proposed and possibility of the adaptive synchroniza-
tion for information transmission on chaotic carriers is
demonstrated.
At present, the communication networks find escalat-

ing applications in many fields of communication, in-
formation processing, and technology. Due to the digi-
tal nature of the modern networks, the signals are quan-
tized in value and time. The limitations of control and
synchronization under constraints imposed by a finite
capacity of communication channels have been widely
studied in the control literature, see the surveys [Nair
et al., 2007; Andrievsky et al., 2010; Matveev and
Savkin, 2009] and references therein. Synchroniza-
tion of nonlinear systems under data rate constraints is

studied in [Fradkov et al., 2008], where quadratic Lya-
punov functions and the passification method [Frad-
kov, 1974; Andrievskii and Fradkov, 2006] were em-
ployed. In the mentioned works is assumed that the
coupled systems have the so-called Lurie form: right-
hand sides are split into a linear part and a nonlinear-
ity vector depending only on the measured output. In
the contrary of [Nair and Evans, 1997; Liberzon and
Hespanha, 2005; Savkin and Cheng, 2007], [Fradkov
et al., 2008; Fradkov and Andrievsky, 2011] assumed
that only master system output (instead of the compo-
nents of the state vector) can be measured, and, conse-
quently, based their synchronization scheme on trans-
mission of the scalar signal rather than a full state vec-
tor. Application of these results to remote state estima-
tion of nonlinear Lurie systems over the digital commu-
nication channel is given in [Fradkov and Andrievsky,
2009; Fradkov and Andrievsky, 2011] and extended to
the case of delay in the channel in [Andrievsky and An-
drievsky, 2012].
In the present paper the data transmission scheme

of [Fradkov and Andrievsky, 2009; Fradkov and An-
drievsky, 2011; Andrievsky and Andrievsky, 2012] is
applied to a class of nonlinear (chaotic) systems which
are not presented in the Lurie form. The fundamen-
tal assumption is that the system linear part satisfies
the Demidovich stability condition [Demidovich, 1961;
Pavlov et al., 2004]. Then, the adaptive information
transmission scheme of [Fradkov et al., 2002; An-
drievskii et al., 2007] is applied to chaotic signal mod-
ulation/demodulation assuming that the modulator and
demodulator are connected over the digital communi-
cation link with a finite capacity.
Although the transmission delay and the communica-

tion channel imperfections usually appear in practice,
it is assumed here that the coded symbols are available
at the receiver side at the same sampling instant as they
are generated by the coder and transmission channel



CYBERNETICS AND PHYSICS, VOL. 2, NO. 1, 2013 11

distortions are absent.
The paper is organized as follows. The information

transmission scheme by [Fradkov et al., 2002; An-
drievskii et al., 2007] based on the adaptive synchro-
nization of the Lorenz systems over the unlimited-
band analogue communication link is briefly recalled
in Sec. 2. Section 3 is devoted to transmission the out-
put signal of the chaotic master system over the dig-
ital communication channel. The coding procedure
employing a uniform quantizer and one-step memory
coder is described in Sec. 3.1, the simulation results are
presented in Sec. 3.2. Concluding remarks are given in
Sec. 4.

2 Adaptive Synchronization of the Lorenz Sys-
tems Over the Analogue Communication Link

At first, let us recall the adaptive information transmis-
sion scheme of [Fradkov et al., 2002; Andrievskii et al.,
2007] over the analogue (unlimited capacity) commu-
nication channel.
Consider the observer-based synchronization of

chaotic nonlinear systems, which are not presented in
the Lurie form. Let the drive system be described by
the following equations:

ẋ = A(y)x+ φ0(y) +Bφ(y)Tθ, y = Cx, (1)

where x ∈ Rn is a vector of state variables, y is the
scalar output, A(y) is an (n×n)-matrix, B is an (n×1)-
vector, C is (1×n)-matrix, φ(y) is a continuous nonlin-
ear function, θ is a transmitter parameter, representing
an information signal (a message). The value of θ is
unknown at the receiver side and should be recovered
by a demodulator.

2.1 Modulated Chaotic Lorenz Generator
Let the master system (the modulator) be the fol-

lowing Lorenz system with a varying parameter θ(t)
[Cuomo et al., 1993; Kennedy and M. Ogorzalek,
1997]:  ẋ1 = σx2 − σx1,

ẋ2 = −x2 − x1x3 + θ(t)x1,
ẋ3 = −βx3 + x1x2.

(2)

where β, σ are constants, known both at the modula-
tor and demodulator nodes; parameter θ(t) depends on
the information signal and should be recovered by the
demodulator. Let the output signal y(t) = x1(t) be
transmitted over the communication channel to the re-
ceiver.
Evidently, system (2) is a special case of (1) with the

following components:

A(y) =

−σ σ 0
0 −1 −y
0 y −β

 , B =

01
0

 ,

φ0(y)=03,1, φ(y)=y, C = [1, 0, 0].

(3)

It is clear, that all entries of matrix A(y) are bounded
for any bounded y and Assumption 4 of [Fradkov
et al., 2002, Theorem 3] holds. Let us find now a
vector-function k(y) ∈ R3 so as the system ẋ =
(A(y)− k(y)C)x, y = Cx be asymptotically stable.
Pick up k(y) ≡ k = [0,−σ, 0]T. Then the matrix-
function G(y) = A(y) − k(y)C is sum of a diagonal
and a skew-symmetric matrix:

G(y) =

−σ σ 0
−σ −1 −y
0 y −β

 . (4)

Consider the system ẋ = G(Cx)x, with the matrix
G(y) given by (4), and introduce the Lyapunov func-
tion V (x) = 0.5xTx. Differentiating V

(
x(t)

)
on t one

obtains:

V̇ (x) = 0.5xT
(
G(Cx)T +G(Cx)

)
x

= xT

−σ 0 0
0 −1 0
0 0 −β

x = −σx2
1 − x2

2 − βx2
3.

Then the following strengthened stability condition
(the Demidovich condition, [Demidovich, 1961; Pavlov
et al., 2004]) for matrix G(Cx) holds:

λi

(
G(y)T +G(y)

)
≤ −ε < 0, y = Cx, i = 1, 2, 3

for some ε > 0, where λi(A) stand for eigenvalues of
matrix A. This leads to an exponential asymptotic sta-
bility of the system ẋ = G(Cx)x and, consequently,
fulfillment of Assumption 3 [Fradkov et al., 2002, The-
orem 3].1

Assumption 1 [Fradkov et al., 2002, Theorem 3] reads
as: for any bounded initial condition x(0) and any
value of θ the state x(t) is a bounded function, im-
poses restriction on variations of θ(t). This Assump-
tion is supposed to be fulfilled. Validity of Assumption
2 (boundness of φ(y) for any bounded y) for φ(y) = y
is evident.
Summarizing, Theorem 3 of [Fradkov et al., 2002]

may be used for designing the adaptation-based data
transmission scheme for modulator (2).

2.2 The Demodulator Algorithm
The demodulator at the receiver’s side is aimed to re-

cover the information signal θ(t) based on the output
signal y(t) of the modulator (2), which is transmitted
over the channel. As follows from [Fradkov et al.,
2002], the demodulator for Lorenz-based modulator (2)
may be taken as

˙̂x1 = σx̂2 − σx̂1, ŷ = x̂1

˙̂x2 = −x̂2 − yr(t)x̂3 + σe(t) + θ̂(t)yr(t),
˙̂x3 = −βx3 + yr(t)x̂2,

(5)

1 Evidently, for the considered case eigenvalues λi are as follows:
λ1 = −2σ, λ2 = −2β, λ3 = −2, therefore ε = 2min(σ, β, 1).
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where e(t) = yr(t)− ŷ(t) can be referred as an obser-
vation error, yr is the received signal; for the case of
an ideal channel it is valid that yr(t) ≡ y(t).
For estimation of the unknown modulator parameter
θ (and, thereby, for recovering the information sig-
nal), the following adaptation algorithm may be imple-
mented in the demodulator:

˙̂
θ = γωê− α(θ − θ0), θ̂(0) = θ̂0, (6)

where γ > 0 is an adaptation gain, α > 0 is a feedback
gain (design parameters), θ̂0 is a “nominal” value of the
estimated signal θ found a priori, the signals ω(t), η(t)
are generated by the following augmented filters:


Ω̇1 = σΩ2 − σΩ1,

Ω̇2 = −σΩ1 − Ω2 + yr(t)Ω3

Ω̇3 = −βΩ3 + yr(t)Ω2,

(7)


η̇1 = ση2 − ση1 − Ω1(t)

˙̂
θ(t),

η̇2 = −ση1 − η2 + yr(t)η3 − Ω2(t)
˙̂
θ(t),

η̇3 = −βη3 + yr(t)η2 − Ω3(t)
˙̂
ϑ(t).

(8)

ω(t) = Ω1(t), ê(t) = e(t) + Cη(t). (9)

3 Synchronization and State Estimation Over the
Limited-Band Communication Channel

3.1 Coding Procedure
Transmitted signal z(t) is uniformly sampled with a

certain sampling time Ts and represented as a discrete-
time sequence z[k] = z(tk), where tk = kTs; k =
0, 1, 2, . . . is a discretization step number. Then the
values of z[k] are coded by means of the following cod-
ing procedure and transmitted over the communication
channel.
A uniform quantizer is defined as the following dis-

cretized map

qν,M (z) =

{
δ · ⟨δ−1z⟩, if |z| ≤ M,

M sign(z), otherwise,
(10)

where the quantizer range M is a positive real num-
ber, ν is a nonnegative integer, δ = 21−νM is the dis-
cretization interval, z denotes the signal to be transmit-
ted over the channel, ⟨·⟩ denotes round-up to the nearest
integer, sign(·) is the signum function: sign(y) = 1,
if y ≥ 0, sign(y) = −1, if y < 0. Since the
cardinality of the mapping qν,M image is equal to
2ν + 1 then each symbol in the codeword contains
R̆ = log2(2

ν + 1) = log2(2M/δ + 1) bits. Taking
into account sampling time Ts, bit-per-second rate R
reads as R = R̆T−1

s = log2(2
ν + 1)T−1

s .
The binary quantizer has a form

q(z,M) = M sign(z). (11)

Note that R̆ = 1 for quantizer (11). Then the corre-
sponding bit-per-second rate R is as R = T−1

s .
The static quantizer (10) is a part of the time-varying

coder with memory [Nair and Evans, 2003; Brockett
and Liberzon, 2000; Tatikonda and Mitter, 2004] uti-
lizing the following procedure.
The output signal

∂̄z[k] = qM (∂z[k]) (12)

is represented as an R̆-bit symbol from the coding al-
phabet and transmitted over the communication chan-
nel to the decoder. The following update rules are per-
formed at the each step:

c[k + 1] = c[k] + ∂̄z[k], c[0] = 0, (13)

M [k] = (M0 −M∞)ρk +M∞, k = 0, 1, . . . , (14)

where 0 < ρ ≤ 1 is the decay parameter, M∞ stands
for the limit value of M . The initial value M0 should
be large enough to capture all the region of possible
initial values of z0. For practice, to avoid computations
of powers of ρ, it is advisable to calculate M [k] in the
following recursive form: M [k+1]=ρM [k]+m, where
m = (1 −ρ)M∞ and the initial condition is taken as
M [0]=M0.
Equations (11), (12), (14) describe the coder algo-

rithm. A similar algorithm is used by the decoder: the
sequence of M [k] is reproduced at the receiver node
utilizing (14); the values of ∂̄z[k] are restored with
given M [k] from the received codeword; the central
numbers c[k] are found in the decoder in accordance
with (13). Then the decoder output z̄[k] is found as a
sum of c[k] and ∂̄z[k], z̄[k] = c[k] + ∂̄z[k].

3.2 Simulation Results
Varying parameter θ(t) was represented in our simu-

lations as θ(t) = r
(
1 + ϑ(t)

)
, where r = 97, ϑ(t) is a

novel modulator parameter, and the demodulator algo-
rithm (6)–(9) was represented with repect to ϑ by sub-
stitution. The following parameter values were taken
for the simulations: σ = 10, β = 8/3, γ = 0.75,
α = 0. The coder parameters were taken as M0 = 50,
M∞ = 10, ρ = exp(−20Ts).
Some simulation results are shown in Figs. 1, 2, where

the time histories of master system input y(t), estima-
tion error e(t) = y(t)−ŷ(t), varying information signal
θ(t) ∈ {0, 1} (a video signal), and its estimate θ̂(t) for
different Ts, ν, and R = log2(2

ν+1)T−1
s are depicted.

For obtaning the summarized characteristics of video
signal transmission by means of the proposed adap-
tive data transmission scheme, the sequence of 200
pseudo-random values of the video singal θ(t) ∈ {0, 1}
of width 5 s each has been taken for the simulations
(therefore, each simulation run lasted 103 s). Recov-
ered variable θ̂(t) was averaged during the each time
slot [5k, 5(k+1)) s, k = 1, . . . , 200 and the result was
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Figure 1. Time histories of y(t), e(t), θ(t), θ̂(t) in the case of
Ts = 0.01 s, ν = 3, R = 317 bit/s.
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Figure 2. Time histories of y(t), e(t), θ(t), θ̂(t) in the case of
Ts = 0.01 s, ν = 5, R = 500 bit/s.
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Figure 3. Error probability plot. Frequency of false identification
P vs ν and Ts.

compared with the threshold equal to 0.5. This result
was used to identify the actual value of θ(t) ∈ {0, 1}.
The error probability plot in the form of frequency P of
faulse identification as a function on coder parameters
ν and Ts is depicted in Fig. 3.

4 Conclusion
The adaptive synchronization of chaotic Lorenz sys-

tems over the limited capacity digital communication
channel is described and its application to information
transmission, based on chaotic signal modulation, is
demonstrated. The data transmission scheme of [Frad-
kov et al., 2008; Fradkov and Andrievsky, 2009; Frad-
kov and Andrievsky, 2011] is extended to a class of
nonlinear (chaotic) systems which are not necessarily
presented in the Lurie form with a scalar nonlinear-
ity depending only on the measured output under the
assumption that the Demidovich stability condition is
fulfilled for the linear part of the system.
The adaptive information transmission scheme is ap-

plyed for chaotic signal modulation/demodulation as-
suming that the modulator and demodulator are con-
nected over the digital communication link with a finite
capacity. The simulation results for transmission of the
video signal are presented and dependence of the sig-
nal transmission accuracy on the data rate is calculated.
The simulation results demonstrate that spreading fac-
tor, which is defined as the number of chaotic samples
sent for each bit, may be inadmissibly large for encryp-
tions schemes, based on chaotic shift keying [Pecora
and Carroll, 1990; Dedieu et al., 1993; Sushchik et al.,
2000; Lau and Tse, 2003; Xia et al., 2004; Kaddoum et
al., 2012] in the case when the digital communication
channel is used for signal transmission.
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