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Abstract
We report the bursting in a globally coupled network

of mixed population of Active and inactive Josephson
junctions. We find the parameter space the parameter
regime of the junction where its dynamics is governed
by the saddle-node on invariant circle (SNIC) bifurca-
tion. We check the parameter regime where the dynam-
ics of the junction governed by the saddle-node on in-
variant circle (SNIC) bifurcation. In this SNIC regime,
the bursting appears in a broad parameters space of the
ensemble of mixed junctions.
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1 Introduction
It is usually modeled as a resistive-capacitive-

shunted junction (RCSJ) which has its mechani-
cal analog in a damped pendulum with a constant
torque. A RCL-shunted junction (resistive-capacitive-
inductively-shunted junction) model ([Lobb 1998],
[Strogatz2 1998], [Dana 2001], [Kurt 2009], [Pikovsky
2013]) was also used to include an inductive loading
effect in an array of junctions where more complex dy-
namics including chaos was seen. Interestingly, the su-
perconducting device shows some typical spiking and
bursting behaviors ([Dana 2006],[Lynch 2012]) most
commonly seen in a Type I excitability neuron [Izike-
vich 2000]. The bursting dynamics was also found
prominent ([Dana 2001], [Dana 2006], [Crotty 2010])
in a periodically forced junction. This is due to the
intrinsic SNIC characteristic of the junction in a se-
lected parameter space ([Strogatz1 1998], [Dana 2006],
[Mackay 2013]), which typically governs a class of
bursting dynamics in Type I excitability neurons.
Spiking is a repetitive firing state and bursting is a

state of recurrent switching between a firing state or
oscillatory state and a resting state. The minimal con-

dition for bursting in a system necessitates the pres-
ence of an intrinsic slow-fast dynamics ([Izikevich
2000],[Hindmarsh 1989], [Rinzel 1986], [Ermentrout
1986]). As example, in biological neurons, the sim-
plest ionic processes involved in spiking are due to the
flow of Na+ andK+ ions across the cell membrane,
while the bursting may be observed when the fast spik-
ing (FS) is controlled by a slow process likeCa++-
gatedK+ ion movement across the membrane. The
slow dynamics controls the firing or start of the oscil-
lation and intermittently stops it when the trajectory of
the dynamics moves slowly towards a steady state. Al-
ternatively, an excitable system when coupled to an os-
cillatory system, was found [Chakraborty 2010] to in-
duce a slow dynamics and thereby originates a type of
chaotic bursting.
On a different context, a mixed population of glob-

ally coupled inactive or excitable and active or oscilla-
tory units was investigated earlier ([Daido 2006],[Pazo
2006],[Sinha 2012], [Luke 2013] ) in search of syn-
chrony and global oscillation. Such a global oscillation
is practically important, particularly, in the context of
a desired synchrony of the pacemaker cells [Kalsbeek
2007]. It is also important to know, in the event of a
growing cell death, how robust are the pacemaker cells
in the heart or the suprachiasmatic cells in the brain
to sustain a globally synchronized oscillation? In the
dynamical sense, a death of a cell is considered as a
passive or an excitable state. In the situation of a pro-
gressive cell death, in other words, increasing number
of passive oscillators, a population of globally coupled
oscillators showed a type of aging transition [Daido
2006]. Such aging transition or death state is not the
focus of this current study. We emphasize rather on
the synchronized state (1:1 or higher phase-locking)
of global oscillation of the mixed population as shown
earlier ([Daido 2006], [Pazo 2006]) where the type of
oscillatory dynamics was not given appropriate atten-
tion.
In this backdrop, we consider the superconducting

RCSJ model to construct a globally coupled network



of mixed population of excitable and oscillatory junc-
tions and, particularly, focus on its collective coherent
dynamics. Each individual junction is governed by the
SNIC bifurcation to limit cycle oscillation. We distin-
guish the RCSJ units as excitable when they are in a
stable steady state for a selected constant current bias
less than a critical value and oscillatory when biased by
a higher constant current to cross the SNIC bifurcation
point. As a result, we find that the presence of a frac-
tion of excitable units generates bursting in the whole
network although the uncoupled oscillatory junctions
never show bursting dynamics. For a coupling above
a threshold, the whole network starts synchronous fir-
ing with single spiking, and for further increase of cou-
pling, periodic bursting appears with increasing num-
ber of spikes in a single burst and finally which clearly
emerges as a parabolic bursting. During the spiking
and bursting above a coupling threshold, the whole net-
work splits into two synchronous clusters, one form-
ing a synchronization manifold of the excitable units
and another of the oscillatory units, however, they are
phase-locked. We reduce the network model using the
two synchronization manifolds of the oscillatory and
excitable units and explain the bursting mechanism and
furthermore, numerically verify the bursting dynamics
of the whole network.

2 Single junction model
A single RCSJ model is described by,

θ̈ + αθ̇ + sinθ = I. (1)

whereθ is phase difference of the junction,θ̇=v is the
voltage across the junction,α=[h/2πeIR2C]1/2 is the
damping parameter,h is the Planck’s constant,e is the
electronic charge andI is a constant bias current. It
has an equilibrium solution of sinθ=I0 in a cylindrical
space. The stability of the equilibrium is obtained from
the f ′(θ∗) = cosθ∗ = (1 − I20 )

1/2 wheref ′=df/dθ
at equilibriumθ = θ∗. For I0 < 1.0, the model has
clearly two equilibrium points, a node forf ′(θ∗) < 0
and a saddle forf ′(θ∗) > 0. They coalesce atI0 = 1.0
via SNIC bifurcation ([Levi 1978], [Strogatz1 1998])
for a choice ofα > 1.19. Forα < 1.19, a fold bifur-
cation is recorded atI0 = 1.0. In addition there is a
bistable region forI0 < 1.0 andα < 1.19. We focus
here on the SNIC regime forI0 > 1.0 andα > 1.19,
where the stable equilibrium is separated from the os-
cillatory regime by a bifurcation line (I0 = 1.0).

3 Network of junctions
We consider a population of N globally coupled RCSJ

units in whichp number of oscillators are in excitable
mode(Ie < 1.0), in general, and(N − p) units are
self-oscillatory (Is > 1.0). The network consists of
two subpopulations and its dynamics is described by
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Figure 1. (Color online) Bursting dynamics in a network of Joseph-

son junctions. Temporal dynamics shown in the left panels and

spatio-temporal dynamics in the right panels for N=100. Fraction

of excitable units in the network,p/N = 0.5. Ie = 0.5, Is =
1.5, p = 0.5, α = 1.5. Asynchronous network forǫ = 3.7
(panels in the uppermost row), two synchronous clusters with burst-

ing in the second row (ǫ = 5.0), third row (ǫ = 8.0), bottom row

(ǫ = 9.7).

two sets of equations,

θ̈e + αeθ̇e + sinθe = Ie +
ǫ

N

N∑

j=1

(θ̇j − θ̇e). (2)

θ̈s + αsθ̇s + sinθs = Is +
ǫ

N

N∑

j=1

(θ̇j − θ̇s). (3)

where e = 1, 2, ..., p and s = p + 1, p + 2, ..., N
denote the excitable and self-oscillatory units respec-
tively. The α = 1.5 is chosen identical for all the
oscillators to restrict our current study in the SNIC
regime [Levi 1978;?]. The bias currents to the ex-
citable and oscillatory units are assumed as,Ie = 0.5
andIs = 1.25 respectively.
For numerical simulations, we first consider a network

of size N=100 with equal number of oscillatory and
excitable units. . Initial conditions are generated us-
ing random numbers between 0.2 and 0.3. Figure 1
reveals a sequence of bursting oscillation in the whole
network for increasing coupling strength in the upper
to the lower panels except the uppermost panels. The
panels in the uppermost row show no phase-locking
for coupling strengthǫ = 3.7. For ǫ > 3.7 in rest
of the panels, the whole population forms two clus-
ters as seen from the time series plot of all the oscil-
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Figure 2. Bifurcation diagram of a Josephson junction unit in the

network. One oscillatory unit randomly chosen from the whole pop-

ulation and shown its bifurcation in the upper panel (a), anddynam-

ics of the reduced model at lower panel (b).Ie = 0.5, Is =
1.5, α = 1.5.

lators (θ̇e, e = 1, ..., 50 andθ̇s, s = 51, .., 100) in each
panel. The excitable and the oscillatory units form two
separate clusters above a threshold coupling (panels in
lower three rows), and the two subgroups are also seen
phase locked. In fact, the first phase-locked firing in
the whole network starts with single spiking dynamics
(not shown here) above a coupling threshold and then
appears the bursting for larger coupling strength and
adds on one after another spike in each burst (left pan-
els in lower three rows). The number of spikes could be
even larger for further increase of coupling strength as
shown later, in the text, when we are able to recognize
the parabolic nature of the bursting. Each of the right
panels describes a temporal pattern of all the oscillator
nodes (e = 1, ..., 50, s = 51, ..., 100); lower three pan-
els clearly show formation of two clusters. These are in
perfect match with the nature of the time series at their
immediate left panels. This allows a reductionism ap-
proach [[Daido 2006], [Nadan 2014]] to the large net-
work dynamics and restrict them into two synchroniza-
tion manifolds,θ1 = θ2 = .... = θp representing the
original excitable units andθp+1 = θp+2 = .... = θN
representing the original oscillatory units when we rep-
resent the network by two oscillators,

Θ̈e + αeΘ̇e + sinΘe = Ie + ǫ(1− p)(Θ̇s − Θ̇e).(4)

Θ̈s + αsΘ̇s + sinΘs = Is + ǫp(Θ̇e − Θ̇s). (5)

wherep/N denotes the fraction of excitable junctions
in the whole population.
Figure 2 presents the bifurcation diagram of the dy-

namics of a single oscillatory unit arbitrarily chosen

from the whole network and its reduced model (4)-
(5) as well. Maxima ofθ̇s of the junction node (say,
s = 1) is plotted with coupling strength (ǫ) in the upper
panel which represents the original oscillatory units (s).
It shows periodic bursting with the number of spikes
increasing in a burst one after another with coupling
strength. Each period-adding regime is intercepted by
a complex bursting window. The maxima ofΘ̇s of the
reduced model is shown in the lower panel and its bifur-
cation is in agreement with the upper panel. The win-
dows of complex dynamics are also found matching,
which also shows complex bursting pattern but here
we do not focus on this feature . The reduced model
thereby perfectly represents the dynamics of the whole
network. The excitable units (e) also show similar bi-
furcation diagram (not shown here) and match with the
reduced model of the excitable units as expected since
they are all phase-locked with the oscillatory units (s).

4 Conclusion
In summary, we investigated a mixed population of

oscillatory and excitable Josephson junctions under all-
to-all global coupling when we observed bursting in a
broad parameter range of the junction and the coupling
strength. We produced numerical evidence of the phe-
nomenon using a network of N=100 oscillators and tak-
ing two equal populations of oscillatory and excitbale
junctions. The whole network splits into two clusters
for our chosen range of coupling strength that helps re-
duce the system into a two-oscillator model. Results
of the reduced model were found perfectly matching
with the numerical results of the whole network. We
found that the number of spikes increases with cou-
pling strength which we supported with a bifurcation
diagram of the whole network and its reduced model.
The bursting dynamics had been a dominant feature of
the mixed population such that it existed for different
percentage of excitable units although we have only de-
tailed the case of fifty-fifty populations of oscillatory
and excitable units.
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