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Abstract 

This work designs a state feedback chaos control 

approach in which it is possible to use only one state 

variable with a control parameter for controlling 

chaos. The method utilizes the controllability 

condition and Routh’s stability criterion to find stable 

and periodic solutions for a chaotic system. Numerical 

and an electronic circuit implementation on a Rössler-

like system is provided to show effectiveness, validity 

and feasibility of the chaos control approach. 
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1 Introduction 

   Controlling chaos involves perturbing a chaotic 

system in order to stabilize a given unstable periodic 

orbit embedded in a chaotic attractor with a chosen 

small perturbation (Fradkov and Evans, 2005; 

Kapitaniak, 1996; Sanjuan and Grebogi, 2010). Such a 

process allows utilizing a chaotic dynamical system 

for the production of a large number of different 

periodic behaviors, with flexibility in different yields.  

  The first control method known as OGY method was 

proposed by Ott et al. (Ott, Grebogi and Yorke, 1990). 

In the OGY method, a perturbation is applied when 

the system state is close to the fixed point. The time 

lapse for a natural passage of the flow within the fixed 

neighborhood and thus for switching on the control 

process can be very large. The control application time 

can be minimized with a technique of targeting 

(Shinbrot et al., 1993). Another approach is a one-

dimensional version of the OGY method, known as 

occasional proportional control (OPF) (Galias et al., 

1996; Hunt, 1991). In the implementation of the OPF 

control, one either uses the peaks of one of the system 

variables or takes derivative of the input signal and 

generates a pulse when it passes through zero in order 

to provide the one-dimensional map. An interesting 

method is the delayed feedback control which forces 

the dynamical behavior of the chaotic system toward 

the desired periodic dynamics whenever the system 

becomes close to such a periodic behavior (Pyragas, 

2006, 1992). The delayed feedback control can be 

considered as a high-pass filter. A similar method 

designed in frequency domain called washout filter is 

based on the insertion of a selective filter within a 

feedback loop (Tesi et al., 1996; Zhou, Lin and Li, 

2011). The other chaos control methods include 

periodic perturbations (Braiman and Goldhirsch, 

1991; Lei et al., 2004; Li, Xu and Li, 2006; Lima and 

Pettini, 1990), stochastic perturbations (Fahy and 

Hamann, 1992), adaptive control (Boccaletti and 

Arecchi, 1996; Hua and Guan, 2004), minimum 

entropy control (Sadeghpour, Salarieh and Alasty, 

2013; Salarieh and Alasty, 2008) and impulsive 

control (Li, Chen and Aihara, 2008; Sun, 2004). In 

addition, many control methods, such as variable 

structure control (Yu, 1997), linear feedback control 

(Liao and Yu, 2006), nonlinear feedback control (Ren 

and Liu, 2006) and sliding mode control (Ablay, 

2009), are applied to chaos for obtaining asymptotic 

stability or tracking a reference signal. These types of 

control approaches are aiming to remove chaotic 

structure completely rather than the stabilization of 

unstable periodic orbits. 

  There are also many application and implementations 

of control of chaos in various scientific fields, which 

shows the possibility of controlling chaos for useful 

goals in practice. The first experimental chaos control 

application of OGY was the stabilization of a chaotic 

gravitationally buckled, amorphous magnetoelastic 

ribbon (Ditto, Rauseo and Spano, 1990). Then, the 

OPF based experimental technique was demonstrated 

on a chaotic diode oscillator (Hunt, 1991). Many other 

applications and experimental systems have followed 

these prototypes and provided successful examples of 

chaos control in electrical and electronic systems, 

communication systems, information systems, physics 

(e.g. lasers, chaos in plasma), mechanical systems 

(e.g. control of vibroformers, vessels and beams), 

chemical and processing industries (e.g. stirring of 

fluid flows), medicine, biology, ecology, economics, 

and spacecraft (Andrievskii and Fradkov, 2004; 

Arecchi et al., 1998; Aslanov and Yudintsev, 2012; 



 

 

Behnia et al., 2013; Chen, 1999; Ferreira, de Paula 

and Savi, 2011; Ablay, 2015; Kapitaniak, 1996). 

  In this study, a state feedback control approach is 

designed for chaos control and an electronic circuit 

implementation of the method is given on a Rössler-

like system. The method needs design of a single 

control parameter which is obtained systematically by 

the use of controllability condition and Routh’s 

stability criterion. A practical implementation of the 

method is illustrated on a Rössler-like system whose 

nonlinear term is described to be the diode’s equation. 

It is shown that unstable periodic orbits of the chaotic 

systems can be stabilized up to many periods in an 

efficient way with the given approach.  

  The following sections cover the state feedback 

based chaos control approach (Section 2), an 

application of the method on a Rössler-like system 

(Section 3), electronic circuit implementations and 

numerical simulations (Section 4), and finally, a 

conclusion to the paper (Section 5). 

 

2 State Feedback for Controlling Chaos 

   Controlling chaos means application of a small 

perturbation to a chaotic system to achieve a desirable 

behavior (i.e., periodic, stationary or chaotic). 

Consider an nth-order chaotic system defined by 

 

             ( ) , , :n n n   x f x x f  (1) 

 

Let ex  be a fixed point of (1).  It is aimed to stabilize 

an unstable periodic orbit embedded in a chaotic 

attractor and occurring around the fixed point ex . The 

controlled system can be given as 

 

                           ( ) ( ) x f x k x  (2) 

where ( )k x  is an n-dimensional control vector 

described by  1( )
T

nk kk x  with feedback 

gains 1 , , nk k . Here, it is aimed to use only a single 

non-zero feedback control element of ( )k x  (e.g., 

1 0k   and 2 , , 0nk k  ) for controlling chaos. To 

determine the non-zero feedback element (or elements 

if necessary), controllability condition of the 

linearized chaotic system can be utilized. 

Linearization of the system (1) at the fixed point ex  

results in  

 

                         ( ) x A K x  (3) 

where /
ex

  A f x  is the linearized system matrix, 

and /
ex

  K k x  is the linearized feedback control 

matrix (for simplicity only one of the diagonal 

elements of 1diag( , , )nk kK  can be selected as 

non-zero). To determine suitable non-zero feedback 

element (or elements), the controllability matrix of (3) 

can be used  

 

               1n   C K AK A K  (4) 

 

For controllability equation (4) must have full rank, 

rank( ) nC , with the selected non-zero feedback 

element. After selection of the feedback element 
jk , 

from the Routh’s stability criterion, a suitable value 

for this feedback gain can easily be obtained. Firstly, 

the characteristic equation of (3) is written as 

 

          
1
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( ) det( ( ))n

n n

n n
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If the controllability matrix of the system (3) is of full 

rank, then the characteristic polynomial (5) can always 

be made Hurwitz stable, i.e. negative real valued roots 

for (5), with an appropriate feedback element 
jk . 

Then, to determine the value of the feedback element, 

the Routh’s table from (5) is written as in the form of 
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Finally, from Routh’s stability criterion which states 

that all values of the first column of the Routh’s table 

(6) must have the same sign for stability (Ogata, 

2009), the value of the single control parameter 
jk  can 

be determined. If one of the elements of the first 

column of (6) is equal to zero, there exists a periodic 

solution. Therefore, the approximate value of 
jk  for 

periodic solutions can also found from the Routh’s 

stability criterion by using the boundary value of jk .  

  

  The state feedback based chaos control method is 

illustrated in Figure 1. The method can also be 

implemented as model independent with some trial 

and error in the parameter adjustments.  

 

( )
d

dt


x
f x

jk

1, , nx x

jx

 
Figure 1.  Block diagram of the state feedback based  

chaos control method. 

 

 

 



 

 

3 A Rössler-like Chaotic system and its Control 
    

3.1 System description and analysis 

  Rössler systems (Rössler, 1979) were introduced in 

1970s as prototype equations with minimum 

ingredients for chaos. These chaotic systems contain 

six terms with a quadratic nonlinearity. There also 

exist Rössler-like systems for various applications and 

structures (Chen et al., 2006; Larptwee and San-Um, 

2013; Pisarchik et al., 2012; Sprott, 2000). Due to 

non-dissipative feature of the Rössler systems, their 

robust electronic implementations are difficult. To 

deal with these problems, a new Rössler-like system is 

described by 

 

                   

( 1)cx

x y z

y x ay

z z b e

  

 

   

 (7) 

 

where nominal values of the system parameters are 

selected as 0.35a  , 0.3b   and 0.03c  . The last 

term in (7) is the equation of a diode, which means 

that a diode can directly be used in electronic circuit 

realizations. The system (7) has a fixed point 

(0, 0, 0)ex   and linearization at the fixed point 

results in the following characteristic equation: 

 

    
3 2( ) (1 ) ( 1 ) (1 )P s s a s bc a s abc         (8) 

 

When the nominal system parameters are inserted in 

(8), the following eigenvalues are found 

  

            0.99, 0.14 0.99j i        (9) 

 

which means that the fixed point ex  is a saddle focus 

and satisfies the following inequality 

 

                              0    (10) 

 

Therefore, according to Shil’nikov theorem (Turaev 

and Shilnikov, 1998; Shilnikov, 1965), the chaotic 

system produces a Shil’nikov chaos. Furthermore, the 

existence of the chaotic attractor can be given by the 

divergence of flows as 
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xx x

a
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For 0 1a  , the Rössler-like system is dissipative, 

i.e. all system orbits will be confined to a specific 

limit set of zero volume and asymptotic motion will 

converge to an attractor (Hunt, 2004).  

 

 
Figure 2.  Chaotic attractor of the Rössler-like system 

from all perspectives for a=0.4, b=0.3 and c=0.03. 

  A bifurcation diagram exhibiting a period-doubling 

route to chaos for the Rössler-like system is shown in 

Fig. 3 for the parameter b in the range of 

0.01 3.5b  . There is a rich interleaving of chaos 

and order for 2.4b  . While it is not shown in the 

bifurcation diagram, there are also periodic and stable 

solution regions when b is greater than 3. Figure 4 

illustrates the rich nonlinear phenomenon and gradual 

forming of the compound structures.  

  

 
Figure 3.  Bifurcation diagram displaying a periodic 

route to chaos of the peak of x versus parameter b. 

 
Figure 4.  Phase portraits: (a) limit cycle for b=5, (b) 

period-2 for b=3, (c) period-4 for b=2.5 and (d) chaos 

for b=2. 

-200

0

200

-400

-200

0

200

0

100

200

300

400

500

600

x
y

z

-200 0 200
-400

-200

0

200

x

y

-200 0 200
0

200

400

600

x

z

-400 -200 0 200
0

200

400

600

y

z

-100 0 100

-100

-50

0

50

x

y

-100 0 100

-150

-100

-50

0

50

100

x

y

-100 0 100
-200

-100

0

100

x

y

-100 0 100

-200

-100

0

100

x

y

b=5 b=3

b=2b=2.5



 

 

3.2 Feedback control design 

  By considering the general control equation (2) and 

the Rössler-like system (7), a control matrix can be 

designed to be 2diag(0, , 0)kK , i.e. only 2 0k  . 

Since the system has a fixed point (0, 0, 0)ex  , the 

linearized system with feedback control can be written 

as 

 

                           2

x y z

y x ay k y

z bcx z

  

  

 

 (12) 

 

It is clear that the controllability matrix given in (4) of 

the system (12) has full rank under any of non-zero 

diagonal feedback gains, but in here 2k  is selected to 

illustrate the proposed chaos control method. The 

main advantage of the use of a diagonal feedback 

element is due to simple design and implementations 

(see Section 4). For system parameters 0.35a  , 

0.3b   and 0.03c  , the characteristic equation of 

the controlled system (12) is obtained as 

 

       
3 2

2 2

3

2

( ) (0.65 ) (0.66 )

(0.997 9x10 )

P s s k s k s
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Creating Routh’s table for (13) yields 
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where 
3

2 2 2(0.65 ) (0.997 9x10 ) / (0.66 )k k k       

which gives the stability condition by 2 0.35k   . 

Then, periodic solutions can be obtained if 2 0.35k    

because there will be a root on the imaginary axis. 

Due to the effects of the nonlinear term of the chaotic 

system, the value of 2k  should be selected slightly 

smaller for stability of fixed points and slightly larger 

for periodic solutions. 

 

4 Electronic Circuit Implementations 

 

  Analog electronics is one of the most useful 

engineering tools available for design and analysis of 

linear and nonlinear systems. It is significant to 

understand that analog electronics solution is simply a 

voltage wave form whose time dependency is the 

same as that of the desired variable. It is a common 

practice that the magnitudes of reference voltages on 

an analog device are normalized to avoid saturation. In 

general, op-amp outputs are confined to ±10 volts, so 

the magnitude of the system is systematically scaled. 

For experimental realizations, dissipative systems are 

preferable for robust electrical circuits (Sprott, 2000). 

  An analog electronics realization of the Rössler-like 

system is given in Figure 5. Electronic elements of the 

circuit include quad TL08x JFET-input op-amps and 

1N4001 diode as the nonlinear element of the circuit. 

The controller is a potentiometer connected in parallel 

to the capacitor of an integrator and is an example of 

the simplest implementation of the chaos control.  

  Figure 5.  An analog electronic realization of the new 

Rössler-like chaotic system and an application of the 

state feedback control. 

  Figure 6 illustrates uncontrolled behavior of the 

Rössler-like system. Numerical and Pspice circuit 

realization results show the same characteristics while 

their initial conditions are different. In numerical 

simulations, the nominal values of the Rössler-like 

system is used, i.e. 0.35a  , 0.3b   and 0.03c  . 

The electronic circuit elements and their values are 

shown in Fig. 5. 

   Figure 7 displays the stabilization of the fixed point 

of the Rössler-like system with the proposed chaos 

control method. As developed in Section 3, the 

stability condition is obtained by 2 0.35k    and thus, 

the feedback control gain is selected as 2 0.5k    for 

numerical simulations. In electronic circuit 

implementation, the value of the potentiometer can be 

taken as 20cR k   or less for fixed point 

stabilization since feedback gain 2k  is proportional to 

1/ cR . It is seen from figure that the stabilization of 

the fixed point is achieved for both numerical and 

circuit realizations efficiently.  

  In Figure 8, a period-1 unstable periodic orbit is of 

concern. As calculated in Section 3, stabilization for 

periodic solutions can be obtained for 2 0.35k    and 

greater control values. Stabilization for a period-1 

behavior is illustrated in Figure 9 for 2 0.2k    and 

40cR k   for numerical and electronic circuit 

realizations, respectively.    

  Similarly, higher order unstable periodic orbits are 

stabilized with proposed control method. Figure 9 

shows stabilization of a period-2 behavior with 

2 0.13k    for numerical simulations and 

80cR k   for circuit realizations. By decreasing the 

control parameter 2k  (or increasing potentiometer 

TL08x 

Rc 

10n 10k 

21k 

TL08x 

-    
TL08x TL08x 

TL08x 

10k 

10n 

10k 

10k 

10n 10k 

14 
10k 1N4001 

10k 
-    

10k 

-    -   
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value cR ), stabilization of a period-4 and a period-8 

unstable periodic orbit are accomplished as seen in 

Figures 10 and 11. It is also possible to stabilize more 

complex unstable periodic orbits in a similar manner. 

  When the control parameter is selected much smaller 

than the periodic solution’s condition 2 0.35k   , 

various controlled chaotic behaviors are obtained. 

Similarly, by selecting the potentiometer value cR  

very large, different controlled chaotic motions are 

observed in circuit implementations.  

 

 
Figure 6.  Chaotic system response without any 

control action: (a) numerical, (b) circuit realizations. 

 

5 Conclusion 

  A state feedback control method is designed for 

controlling chaos with an implementation on a 

Rössler-like system. The study set out to develop an 

efficient feedback chaos control approach for 

stabilization of unstable periodic orbits embedded in 

chaotic attractors. The feedback controller is designed 

with an adjustable resistor to electronic realization 

circuit of Rössler-like chaotic system whose nonlinear 

term is defined and designed with diode. It is shown 

that the linear chaos control approach is able to 

stabilize unstable periodic orbits with only one control 

parameter and without needing any waiting time. 

Model-independent implementation of the controller 

is also possible, which can make practical realizations 

reasonably easy and cheap. 

 

 

 
Figure 7.  Fixed point stabilization, (a) numerical 

result for k=-0.5, (b) circuit realization for Rc=20kΩ. 

 

 
Figure 8.  Controlled limit cycle response: (a) 

numerical result for k=-0.2, (b) circuit realization for 

Rc=40kΩ. 
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Figure 9.  Controlled period-2 response, (a) numerical 

result for k=-0.13, (b) circuit realization for Rc=80kΩ. 

 

 
Figure 10.  Controlled period-4 response, (a) 

numerical result for k=-0.108, (b) circuit realization 

for Rc=110kΩ. 
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Figure 11.  Controlled period-8 response, (a) 

numerical result for k=-0.105, (b) circuit realization 

for Rc=112kΩ. 
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