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Abstract
Coherence resonance chimeras are partial synchro-

nization patterns made up of spatially separated do-
mains of coherent and incoherent spiking. They have
been recently discovered for nonlocally coupled net-
works of excitable elements in the presence of random
fluctuations and demonstrate constructive role of noise
for chimera states. These patterns are different from
classical chimera states occurring in deterministic os-
cillatory systems and provide a link between two phe-
nomena: coherence resonance and chimera states. A
distinctive feature of this chimera type is its alternating
behavior, i.e., periodic switching of the location of co-
herent and incoherent domains. Applying time-delayed
feedback we demonstrate how to control coherence res-
onance chimeras by adjusting delay time. In particular,
we show that the feedback increases the parameter in-
tervals of existence of chimera states and has a signifi-
cant impact on their alternating dynamics leading to the
appearance of novel patterns, which we call period-two
coherence resonance chimera.
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1 Introduction
In real-world systems the occurrence of random fluc-

tuations, i.e., noise, is unavoidable. It is known that
noise can play a constructive role and give rise to new
dynamic behavior, e.g., coherence resonance [Hu et al.,
1993; Pikovsky and Kurths, 1997; Zakharova et al.,
2010; Zakharova et al., 2013]. This counter-intuitive
phenomenon describes a non-monotonic behavior of

the regularity of noise-induced oscillations in the ex-
citable regime. It has been previously shown that co-
herence resonance can be modulated by applying time-
delayed feedback. A novel type of coherence reso-
nance, coherence resonance chimera state, has been
found recently in networks of nonlocally coupled ex-
citable elements [Semenova et al., 2016; Zakharova
et al., 2017]. This regime provides a link between two
phenomena: coherence resonance, and chimera state
[Panaggio and Abrams, 2015; Schöll, 2016], i.e., coex-
istence of spatially coherent and incoherent domains in
a network of identical elements. These states are dis-
tinct from classical chimeras, which occur in determin-
istic oscillatory elements [Kuramoto and Battogtokh,
2002; Abrams and Strogatz, 2004]. It is well-known
that in the presence of time delay simple dynamical
systems can exhibit complex behavior, such as delay-
induced bifurcations, stabilization of unstable periodic
orbits or stationary states, to name just a few exam-
ples. Chimera states have also been found in delayed-
feedback systems. In particular, internal delayed feed-
back has been shown to induce chimeras in systems
of globally coupled phase oscillators [Yeldesbay et al.,
2014] and laser networks [Böhm et al., 2015]. Chimera
states in the presence of both delayed feedback and
noise have been investigated in [Semenov et al., 2016].

In the present work we study the role of time-delayed
feedback for coherence resonance chimeras. A distinc-
tive feature of this noise-induced patterns in that they
occur in a certain restricted interval of systems param-
eters. The question we address here is whether this in-
tervals can be increased by introducing time-delayed
feedback. While exploring the impact of time delay
we uncover the mechanisms to control coherence reso-
nance chimeras by time-delayed feedback. Our results



show that applying feedback promotes the occurrence
of coherence resonance chimeras and induces novel
chimera patterns.

2 Model
We consider a ring of N identical nonlocally coupled

FitzHugh-Nagumo (FHN) systems with time-delayed
feedback in the presence of Gaussian white noise:

εdui

dt = ui − u3
i

3 − vi + σ
2R

i+R∑
j=i−R

[buu(uj − ui)+

+buv(vj − vi)] + γ(ui(t)− ui(t− τ)),

dvi
dt = ui + a+ σ

2R
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+bvv(vj − vi)] +
√

2Dξi(t),
(1)

where ui and vi are the activator and inhibitor vari-
ables, respectively, i = 1, ..., N and all indices are
modulo N , σ is the coupling strength, R is the number
of nearest neighbours in each direction on a ring. We
also introduce the coupling range which is the normal-
ized number of nearest neighbours r = R/N , whereN
is the total number of elements in the network. Further,
ξi(t) ∈ R is Gaussian white noise, i.e., 〈ξi(t)〉= 0 and
〈ξi(t)ξj(t′)〉 = δijδ(t − t′), ∀i, j, and D is the noise
intensity. The feedback term is characterized by time
delay τ and strength γ. A small parameter responsible
for the time scale separation of the fast activator and
slow inhibitor is given by ε > 0, and ai defines the ex-
citability threshold. For an individual FHN element it
determines whether the system is excitable (|ai| > 1),
or oscillatory (|ai| < 1). In the present study we as-
sume that all elements are in the excitable regime close
to the threshold (ai ≡ a = 1.001, except Figs.6 and
7). Eq. (1) contains not only direct, but also cross cou-
plings between activator (u) and inhibitor (v) variables,
which is modeled by a rotational coupling matrix:

B =

(
buu buv

bvu bvv

)
=

(
cosφ sinφ
− sinφ cosφ

)
, (2)

where φ ∈ [−π;π). Here we fix the parameter φ =
π/2− 0.1. In the absence of time delay τ = 0 chimera
states have been found for this value of φ in both the
deterministic oscillatory [Omelchenko et al., 2013] and
the noisy excitable regime [Semenova et al., 2016; Za-
kharova et al., 2017]. In the presence of Gaussian white
noise a special type of chimera state called coherence
resonance chimera appears in a ring of N nonlocally
coupled excitable FHN systems (Fig. 1).

3 Coherence resonance chimeras in the presence
of time-delayed feedback

In the present work to control coherence resonance
chimeras we introduce time-delayed feedback to the
first equation in system Eqs. (1). For that purpose we

fix all the parameters of the system in the regime of co-
herence resonance chimeras and vary those character-
izing the feedback term: γ and τ . For γ = 0 the system
Eqs. (1) demonstrates coherence-resonance chimeras
with the period T ≈ 4.76. This regime can also be
observed in the presence of time-delayed feedback for
γ = 0.2, τ = 1.0 and is shown as a space-time plot
color-coded by the variable ui in Fig. 1(a,b). One can
clearly distinguish the regions of coherent and incoher-
ent spiking. To characterize spatial coherence and in-

Figure 1. (a),(b) Space-time plots and (c) local order parameter for
the coherence-resonance chimera. Initial conditions: randomly dis-
tributed on the circle u2 + v2 = 4. Parameters: N = 500,
ε = 0.05, φ = π/2− 0.1, a = 1.001, σ = 0.4, r = 0.2,
D = 0.0002, γ = 0.2, τ = 1.0.

coherence of chimera states one can use the local order
parameter:

Zk =
∣∣∣ 1

2δZ

∑
|j−k|≤δZ

eiΘj

∣∣∣, k = 1, . . . N (3)

where the geometric phase of the j-th element is de-
fined by Θj = arctan(vj/uj) and Zk = 1 and Zk < 1
indicate coherence and incoherence, respectively. Fig-
ure 1(c) represents a space-time plot color-coded by Zi
and illustrates coexistence of coherent and incoherent
domains with the latter characterized by values of Zi
noticeably below unity (dark regions). One of the main
features of these noise-induced chimera states is their
alternating behavior which is absent in the oscillatory
regime without noise. In more detail, the incoherent
domain of the chimera pattern switches periodically its
position on the ring, although its width remains fixed
(Fig. 1(b,c)). This property has been previously de-
scribed in [Semenova et al., 2016] and the explanation



based on the time evolution of the coupling term has
been provided in [Zakharova et al., 2017]. Taking into
account that the system Eqs. (1) involves both direct
and cross couplings between activator u and inhibitor
v variables, in total we have four coupling terms. It
turns out that the coupling terms form patterns shown
as space-time plots in Fig. 2(a)–(d). The crucial point

Figure 2. Space-time plots of coupling terms for u and v variables
in the coherence-resonance chimera regime: (a) direct coupling for
the u variable, (b) cross coupling for the u variable, (c) cross cou-
pling for the v variable, (d) direct coupling for the v variable. (e)
Space-time plot of the delay term. Parameters as in Fig. 1.

is that the coupling acts as an additional term and shifts
the nullclines of every individual element of the net-
work. The coupling term with the strongest impact cor-
responds to cross coupling for the v variable (Fig. 2(c)).
It means that the coupling significantly influences the
u̇ = 0 nullcline and shifts the threshold parameter a
which is responsible for the excitation. As a result for
a certain group of nodes the threshold becomes lower
due to coupling and the probability of being excited by
noise increases. Therefore, the elements of this group
are the first to start the large excursion in the phase
space and experience random spiking. The elements
constituting the rest of the network spike coherently
since they are pulled by already excited nodes and are,
therefore, excited by coupling and not by noise. This
scenario can also be obtained for the system Eq. (1)
in the presence of time-delayed feedback (Fig. 2). Due
to feedback an additional term appears in Eq. (1) and

should be taken into account. Its evolution in time for
all nodes of the network is shown in Fig. 2(e). The
color-code bar clearly indicates that the values of the
feedback term are larger than those of the coupling
terms. However, for the chosen value of delay time
τ = 1.0 the feedback does not have any essential im-
pact on the behavior of coherence resonance chimeras
since it is less than the intrinsic period of oscillations
T = 4.76 (Figs 1, 2).
Since our main goal is to study the impact of time-

delayed feedback we now choose the parameters of the
system in the regime of coherence resonance chimera
and vary only the feedback parameters γ and τ . For
the fixed feedback strength γ = 0.4 we observe the
change of dynamic regimes by tuning the delay time τ .
In more detail, for τ = 3.6 all the nodes of the network
spike coherently, i.e, in-phase synchronization occurs
(Fig. 3,a). The feedback with τ = 2.2 shifts the sys-
tem into the regime which is incoherent in space and
periodic in time: all the nodes demonstrate spiking be-
havior, but the spiking events of the neighboring nodes
are not correlated (Fig. 3,b).

Figure 3. Space-time plots for the variableui (left panels) and local
order parameter Zi in the regime of (a) spatial synchronization for
γ = 0.4, τ = 3.6 and (b) spatial incoherence for γ = 0.4,
τ = 2.2. Other parameters as in Fig. 1.

4 Noise intensity interval of existence
Without feedback as previously reported, coherence

resonance chimeras are observed for a certain restricted
interval of noise intensity 0.000062 ≤ D ≤ 0.000325
for the following parameters of the system: N = 500,
ε = 0.05, a = 1.001, φ = π/2 − 0.1, r = 0.2,
σ = 0.4 (this set of parameters is fixed throughout the
manuscript). Time-delayed feedback modifies this in-
terval. To illustrate this effect we consider two cases:
γ < 0.5 and γ > 0.5 which allows for a better un-
derstanding of the impact of feedback strength on this
interval. Also for the two values of parameter γ we
choose different delay times τ . Time-delayed feedback
slightly changes the range of noise intensity values



where chimera states occur in the system Eqs.(1) for
both considered values of feedback strength: γ = 0.2
(Fig. 4) and γ = 0.6 (Fig. 5).
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Figure 4. Dynamic regimes depending on the noise intensityD for
feedback strength γ = 0.2 and different values of delay time: (a)
τ = 9.52, (b) τ = 6.0, (c) τ = 4.76, (d) τ = 1.8, (e) τ =
0.8, (f) τ = 0. Dynamic regimes: steady state (yellow/light grey);
spatially incoherent spiking (pink/dark grey); coherence resonance
chimeras (hatching). Other parameters as in Fig. 1.
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Figure 5. Dynamic regimes depending on the noise intensityD for
feedback strength γ = 0.6 and different values of delay time: (a)
τ = 9.52, (b) τ = 4.76, (c) τ = 0.8, (d) τ = 0. Dynamic
regimes: steady state (yellow/light grey); spatially incoherent spiking
(pink/dark-grey); synchronization (green/grey); coherence resonance
chimeras (hatching). Other parameters as in Fig. 1.

For rather weak feedback strength γ = 0.2 the in-
terval of existence of chimera patterns is enlarged for
all the considered delay times. Furthermore, due to
feedback, chimera states appear for vanishing noise in-
tensity (Fig. 4(a)–(d)). Therefore, time-delayed feed-
back promotes coherence resonance chimeras not only
increasing the range of noise values where they ex-
ist, but also inducing these patterns in the case of al-
most no noise. The largest range of D corresponds to
τ = 6.0 (Fig. 4,b). Large feedback strength γ = 0.6

can also shift the left boundary of the chimera inter-
val to lower (Fig. 5a,b) and even zero (Fig. 5c) noise
values. The right boundary of the interval strongly de-
pends on τ and shifts into the direction of lower noise
intensities (Fig. 5a,b,c). The largest detected interval
for γ = 0.6 corresponds to τ = 4.76 ≈ T (Fig. 4,b)
and for τ = 9.52 ≈ 2T we even observe the shrink-
ing of the interval (Fig. 5a). If we compare the in-
terval of chimera existence without time-delayed feed-
back 0.000062 ≤ D ≤ 0.000325 (Fig. 4,f and Fig. 5,d)
with the interval the most enlarged by the feedback
0.000001 ≤ D ≤ 0.00035 it turns out that we achieve
33 per cent improvement rate.

5 Threshold parameter interval of existence
It has been previously shown that coherence reso-

nance chimera can be obtained only in a small interval
of a values (0.995 ≤ a ≤ 1.004). To analyze the im-
pact of time-delayed feedback we again consider two
cases: γ = 0.2 and γ = 0.6 and different values of
delay time. Figure 6 corresponds to the case of small
feedback strength γ = 0.2 and Figure 7 illustrates the
results for the case of larger delay strength γ = 0.6.

 0.99  0.995  1  1.005  1.01  1.015  1.02

a

(f)

(e)

(d)

(c)

(b)

(a)

Figure 6. Dynamic regimes depending on the threshold parameter
a for feedback strength γ = 0.2 and different values of delay time:
(a) τ = 9.52, (b) τ = 6.0, (c) τ = 4.76, (d) τ = 1.8, (e)
τ = 0.8, (f) τ = 0. Dynamic regimes: steady state (yellow/light
grey); spatially incoherent spiking (pink/dark grey); coherence reso-
nance chimeras (hatching). Other parameters as in Fig. 1.

For the two considered values of γ time-delayed feed-
back significantly changes the range of threshold pa-
rameter a where coherence resonance chimera exists.
Moreover, in both cases this interval is increased the
most when delay time is equal to the intrinsic period
of the system τ = 4.76 ≈ T (Fig. 6c and Fig.
7b). However, smaller feedback strength allows for
a stronger enlargement of the interval: for γ = 0.2
and τ = 4.76 it is 0.993 ≤ a ≤ 1.017, and is more
than doubled compared to the case without feedback
0.995 ≤ a ≤ 1.004 (Fig. 6c).
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Figure 7. Dynamic regimes depending on the threshold parameter
a for feedback strength γ = 0.6 and different values of delay time:
(a) τ = 9.52, (b) τ = 4.76, (c) τ = 0.8, (d) τ = 0. Dynamic
regimes: steady state (yellow/light grey); spatially incoherent spiking
(pink/dark grey); coherence resonance chimeras (hatching). Other
parameters as in Fig. 1.

Interestingly, for τ ≈ T and a > 1.01 we find a novel
chimera regime which is induced by time-delayed feed-
back and has not been previously shown for the system
Eq.(1) without delay. The space-time plot for the vari-
able ui and the local order parameter indicate the co-
existence in space of coherent and incoherent spiking
as well as alternating behavior, typical features of co-
herence resonance chimera (Fig. 8). Furthermore, the
alternation takes place periodically, and the incoherent
domain switches its position on the ring. However, the
switching events occur not for every spiking cycle as
in the coherence resonance chimera state (Fig. 1b,c),
but for every second spiking event (Fig. 8a,b). Due to
this distinguishing feature we call the pattern period-
two coherence resonance chimera.

Figure 8. Space-time plot for the variable ui (a) and local order
parameter Zi (b) in the regime of period-two coherence-resonance
chimera. Initial conditions: randomly distributed on the circle u2 +
v2 = 4. Parameters: N = 500, ε = 0.05, a = 1.012,
σ = 0.4, r = 0.2,D = 0.0002, γ = 0.2, τ = 4.76.

6 Conclusion
In conclusion, we demonstrate that time-delayed

feedback in a network of nonlocally coupled noisy
FitzHugh-Nagumo elements in the excitable regime
promotes coherence resonance chimeras. It allows one
to control the range of parameter values where they

exist, and in most of the cases this range increases.
Moreover, the feedback induces coherence resonance
chimeras for vanishing noise intensities. Addition-
ally, we show that the threshold parameter interval of
chimera existence can be more than doubled by apply-
ing feedback with delay time close to the intrinsic pe-
riod of the system. Compared to the case without feed-
back this provides an essential improvement relevant
for the experimental realization of coherence resonance
chimeras. Furthermore, when the feedback delay coin-
cides with the intrinsic period of the network we find a
novel feedback-induced regime which we call period-
two coherence resonance chimera. Since the dynam-
ics of every individual network element in our study
is given by the FitzHugh-Nagumo system, a paradig-
matic model for neurons in the excitable regime, we
expect wide-range applications of our results to neural
networks.
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