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Abstract
The problem of localization of attractor of

“solar wind-magnetosphere-ionosphere” (WINDMI)
three-dimensional model has stimulated the
development of method of conical nets. In the
paper the development of this method is carried out
and analytical localization of the attractor of this model
are obtained.
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1 Introduction
In the present paper we consider the localization

problem of attractor of 3-dimensional simplified
model of 6-dimensional system, describing
the dynamics of energy flow through “solar
wind-magnetosphere-ionosphere” (WINDMI)
system. The problem of attractor localization
has stimulated the development of method of
positively invariant cone grids (which is often used
for study of control systems) [Leonov et al.(19961);
Yakubovich et al.(2004); Leonov et al.(19962);
Leonov(2006); Leonov et al.(2009)] for its study.
Further development of this method is carried out and
analytical estimates of the attractor of the model are
obtained.

2 Development of the method of positively
invariant cone grids

Consider a system

dx

dt
= Px + qϕ(r∗x), x ∈ R

n. (1)

Here P is a constant degenerate(n × n)-matrix, q

and r are n-dimensional vectors,∗ is an operation
of transposition, andϕ(σ) is a differentiable scalar
function satisfying the following sector conditions

ϕ(σ) < µ(σ − α), ∀σ ≥ α, (2)

µ(σ − β) < ϕ(σ), ∀σ ≤ β, (3)

whereµ is a certain positive number,α < β.
Let the pair(P, q) be totally controllable, the pair

(P, r) be totally observable, and system (1) have a
unique equilibrium.
Theorem. Suppose,r∗q ≤ 0, there exists a number

λ > 0 such that the matrixP + λT has (n − 1)
eigenvalues with negative real parts, and the following
inequality

ReW (iω−λ)+µ|W (iω−λ)|2 ≤ 0, ∀ω ∈ R
1 (4)

is satisfied. Then for any solutionx(t) of system (1)
there exists a numberT such that

r∗x(t) ∈ (α, β), ∀t > T. (5)

HereW (p) = r∗(P −pI)−1q is a transfer function of
system (1),I is a unit(n × n)-matrix.
We give a scheme of the proof of Theorem 1.

Condition (4) implies the existence of symmetricn×n-
matrix H such that for it there are valid the following
conditions (the detailed proof of this fact can be found
in [Leonov et al.(19961)]):
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1) the matrixH has one negative and(n− 1) positive
eigenvalues,
2) for all z ∈ R

n andξ ∈ R
1 the inequality

2z∗H [(P + λI)z + qξ] + r∗z(r∗z − µ−1ξ) ≤ 0 (6)

is satisfied. Note that relation (6) yields the relation

2Hq = µ−1r.

Then from Theorem 1 it follows thatr∗H−1r =
2µr∗q ≤ 0 and, therefore, [Leonov et al.(19961)] we
have

z∗Hz ≥ 0, ∀z ∈ {z∗r = 0}. (7)

Let bed ∈ R
n such thatd 6= 0 andPd = 0, r∗d = 1.

Then relation (6) implies thatd∗Hd < 0.
Consider now the Lyapunov-type function

V1(x) = V (x − αd) = (x − αd)∗H(x − αd),

V2(x) = V (x − βd) = (x − βd)∗H(x − βd).

From relations (2), (3), (6) it follows that

V̇1(x(t)) + 2λV1(x(t)) < 0 for r∗x(t) > α,

V̇2(x(t)) + 2λV2(x(t)) < 0 for r∗x(t) < β.

In this case relation (7) implies positive invariance of
the sets [Leonov et al.(19961)]

Ω(α) = {(x − αd)∗H(x − αd) < 0, r∗x ≥ α},

Ω(β) = {(x − βd)∗H(x − βd) < 0, r∗x ≤ β}.

Then it is easily seen that the closuresΩ(α), Ω(β) are
also positively invariant. In this case the boundaries
∂Ω(α) and ∂Ω(β) do not involve whole trajectories
and they are almost everywhere transverse to vector
field of system (1). In the phase space of system (1)
these boundaries make up a continuum set of surfaces
(conical net), which is shown in Fig. 1.
In increasing time t the structure constructed

“huddles” any solution in the setΩ(α) ∩ Ω(β). The
latter proves the assertion of theorem.
Note that the estimate obtained cannot be improved

in the considered class of nonlinearities since if for all
σ ∈ (α, β) ϕ(σ) = 0, then forν ∈ (α, β) x = νd is a
stationary solution of system.

3 WINDMI system
Consider a system

...
x + bẍ + c1ẋ + ϕ(x) = 0,

ϕ(x) = (c2 + c3tanh(x)),
(8)

Figure 1. Cone grids

where

tanh(x) =
ex − e−x

ex + e−x
.

System (8) is 3-dimensional simplified model of 6-
dimensional system (obtained in [Horton et al.(2001)])
used for analysis of geomagnetic storms and substorms
[Spencer et al.(2006)] and modeling the energy flow
through the solar wind-magnetosphere-ionosphere
system.
System (8) is called a simplified WINDMI model.

As in [Horton et al.(2001)], the parameters of (8), by
assumption, are the following

b > 0, c1 > 0, c3 > c2 > 0.

These parameters are given in the dimensionless
form and computed by the formulas from
[Horton et al.(2001)]. Some dynamical features
of model (8) (such as the graphs of the
largest Lyapunov exponent; Lyapunov dimension
versus the solar wind dynamo voltage; the bifurcation
diagram) are shown in [Horton et al.(2001)].
Our aim is to study a location of invariant sets of

simplified WINDMI model.
Let us apply the theory, developed above,

to investigation of equation (8). In this case
the maximal coefficient µ can be computed
[Yakubovich et al.(2004)] by the formula

µ =











b

3

(

c1 −
2

9
b2

)

, b2 ≤ 3c1

b

3

(

c1 −
2

9
b2

)

+ 2

(

b2

9
−

c1

3

)3/2

, b2 ≥ 3c1

Determine a pointx0 > 0 such thatϕ′(x0) = µ,

x0 = argcosh

√

c3

µ
for

c3

µ
> 1.

Taking into account the relationϕ′(x0) = ϕ′(−x0) =
µ, we obtain restrictions (2) and (3) on the nonlinearity
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ϕ(x) (Fig. 2). Denote

α0 = −
ϕ(x0)

µ
+ x0, −

ϕ(−x0)

µ
− x0 = β0.

Then by (2), (3), and (5) we obtain

α0 ≤ lim
t→+∞

inf x(t), lim
t→+∞

sup x(t) ≤ β0. (9)

For the estimation ofẋ and ẍ we remark that
by the conditions of positiveness of coefficients the
characteristic polynomial of linear part of equation
(8) has roots to the left of imaginary axis and the
nonlinearityϕ(x) is bounded:

|ϕ(x)| ≤ c2 + c3.

In this case, using Cauchy formula, we
can obtain [Cesari(1959); Leonov(2001);
Leonov & Kuznetsov(2007)] the following estimates
for |ẋ(t)|:

yatt=











lim
t→+∞

sup |ẋ(t)| ≤
1

c1

(c2 + c3), b
2 ≥ 4c1,

lim
t→+∞

sup |ẋ(t)| ≤
2

b

√

c1 −
b2

4

(c2 + c3), b
2 < 4c1,

and for|ẍ(t)|:

lim
t→+∞

sup |ẍ(t)| ≤
(c1yatt + c2 + c3)

b
.

These estimates together with estimate (9) for|x(t)|
localize an attractor of equation (8).

Figure 2. Estimation of nonlinearity
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