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Abstract 
An effective procedure to study systems of 
coupled rotators and oscillators that govern 
dynamics of different mechanical systems, 
electric-mechanical systems, superconduc-
tive systems etc. is discussed here. The pro-
cedure is based on special transformations 
of systems of coupled rotators to the stan-
dard form suitable for application of the 
method of averaging. Averaging of obtained 
systems leads to the equations in a form that 
allows for obtaining the full information 
about dynamics of the systems. In particular, 
the full knowledge about periodic, quasi-
periodic and chaotic oscillatory regimes can 
be obtained. This information is used to ob-
tain torque-speed curves. Proposed proce-
dure is thoroughly illustrated by different 
examples. This technique can be applied for 
systems with any number of degrees-of-
freedom. 
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1 Introduction  

Since the time of van der Pol [1927], the 
method of averaging remains one of the 
main analytical methods used to study dy-
namical systems. In earlier studies, this 
method was used for approximate engineer-
ing calculations, but after the studies of Kry-
lov and Bogolyubov [1947], Hale [1963], 
Mitropolsky and Lykova, [1973], Neimark 
[1972], and others, this method became one 
of the main methods in the qualitative theory 
of dynamical systems. This method provides 

initial information for qualitative and quanti-
tative studies of system dynamics. This is 
important because with knowledge of the 
initial information of the structure of the 
phase space of a dynamical system one can 
proceed directly with a numerical study. 

A significant contribution to the study of 
the dynamics of vibrational systems has 
been made by the school of I. I. Blekhman 
[1965, 1988, 1994]. 

The effectiveness of the method of averag-
ing depends on the simplicity of the systems 
obtained. This is defined by the form of the 
transformation of the initial systems to a 
standard form (either in terms of Krylov-
Bogolyubov or systems with fast-spinning 
phases), i.e., by a choice of the form of 
changes of variables. For systems of coupled 
slightly nonlinear oscillators, such changes 
are known. These are van der Pol changes 
and changes of the “amplitude-phase” form. 
With coupled rotators, it is not possible be-
cause of the cylindrical phase space of these 
systems.  
 
2 The model 

Here, we propose algorithms to transform 
systems of coupled rotators to the standard 
form [Verichev, 1986] and illustrate it by 
real examples of the dynamical systems. 
Consider dynamical systems of the form 
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Here: 1,i n= ;  is any number from the in-
terval 

j
[ ]1,n  for a given ; i Sϕ∈ ; Sψ ∈ ; 

mR∈x ; λi  and γ i  are the constant parame-
ters; 1I µ− =  is a small parameter; A  is a 
constant (stable) Gurvitz matrix of dimen-
sion ; and  and ( ×m m) iF X  are the cou-
pling functions. All functions are periodic 
by phase variables. System (1) is defined in 
toroidal phase space 

. ( ) 1, , , n nG Tψ + += ×xϕ ϕ mR
 
2.1 Example 1  

The most simple dynamical system of the 
form (1) is a non-autonomous rotator gov-
erned by equations of the form  
 

0

sin sin ,
                  .
I A+ + = +

=
ϕ ϕ ϕ γ ψ

ψ ω  (2) 

 
Using this well-known system, let us dem-
onstrate the algorithm of transformation to 
the standard form with a fast-spinning phase 
and study it using the method of averaging.  

Consider the quasi-linear case, 
. We study the dynamics of sys-

tem (2) only in the zone of the main reso-
nance.  

1 1I µ− =

Our goal is to transform system (2) to the 
equivalent system of the form  
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Because 1µ , system (3) has a standard 

form with fast-spinning phases ϕ  and ψ . 
The objective is to determine functions 

( ), ,Ф x ϕ ψ and ( ), ,ϕ ψX x . 
Substituting the second equation of system 

(3) into system (2), we obtain  
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Demanding functions  to be bounded by 
and 

Ф
ψ , and using the first equation of sys-

tem (3), we obtain that 0γ ω µ− = ∆  (zone of 
main resonance) and obtain an equation that 
determines function ( ), ,ϕ ψФ x :  
 

0 0 sin sinФ Ф Aω ω ϕ
ϕ ψ

ψ∂ ∂
+ = − +

∂ ∂
.  (5) 

 
This equation has the solution 
 

0 0

1 cos cosAФ xϕ ψ
ω ω

= + + .        (6) 

 
Remaining terms in equation (4) determine 
the function ( ), ,ϕ ψX x : 
 

( ), , 1 ФX x Фϕ ψ
ϕ

⎛ ⎞∂
= ∆ − +⎜ ∂⎝ ⎠

⎟ .       (7) 

 
Thus, the required functions are obtained. 
Having introduced phase mistuning 
η ϕ ψ= − , we reduce system (3) to the sys-
tem with one fast-spinning phase: 
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The theory of averaging of systems of the 
form (8) is known [Volosov and Morgunov, 
1971, Sanders and Verhulst 1985]. Averag-
ing this system and performing some simple 
transformations, we obtain the well-known 
equation of a pendulum:  
 

sinr rη λ η η γ+ + = ,  (9) 
 

where 
2
02 ,ωλ =r
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A
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Definition  

The function ( )0
0

1lim ,
T

T
t d

T
ϕ τ τ  is defined 

under the parameter space of system (1), and 
the space of its initial conditions is called 

→∞
Ω= ∫
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the rotation characteristic of the rotor 
(torque-speed curve). 

Evidently, any motion of the system under 
consideration has the following form: 
( ) ( ) ( )*

0 0, , 0,ϕ τ τ ϕ τ τ ϕ τ τ= + , where ϕ  
is a solution corresponding to the transient 
process of the finite solution *ϕ . For an 
autonomous pendulum, such solutions are 
equilibrium and a limit cycle. Clearly, aver-
age values of averaged processes are equal 
to zero; therefore,  
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→∞
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Thus, the problem of obtaining the different 
qualitative forms of torque-speed curves for 
different system parameters is related to a 
classical problem of the decomposition of 
the parameters’ space into the domains cor-
responding to the qualitatively different 
structures of trajectories in the phase of the 
system. If we have known qualitative forms 
of phase trajectories and dependence of limit 
sets versus a certain parameter, it is not dif-
ficult to obtain the dependency of the 
torque-speed curve versus this parameter. 
We are interested in the dependency 

( )γ γ= Ω . Using the aforementioned defini-
tion and method of averaging, we obtain  
 

  * *
0t t

ϕ ω η= + .          

(11) 
 
For the parameters γ r  and λ r  from the do-
main for which there exists a limit cycle 
(synchronization regime) and invariant torus 
(regime of regular beating), the torque-speed 
curve of a non-autonomous rotator has the 
form shown in Figure 1. 
 
The vertical line 0ωΩ =  on the torque-speed 
curve corresponds to the synchronization 
regime. Its length satisfies the inequality 

1rγ ≤ , or 0 02 2
0 02 2

A Aω µ γ ω µ
ω ω

− ≤ ≤ + . For 

1 0rγ = + , the limit cycle disappears and 
the rotator jumps from the synchronization 
regime to the regime of quasi-periodic beat-

ing, which corresponds to the torus . In 
this case, 

2T
* 0

t
η ≠ , and the value *

t
η  in-

creases (decreases) as ~γ γr  increases (de-
creases). If , then with the decrease of 
this parameter, the regime of regular beating 
becomes a regime of chaotic beating. The 
chaotic limit set of the type “torus-attractor” 
is related to the bifurcation of destruction of 
a two-dimensional invariant torus  
[Afraimovich and Shilnikov, 1991]. During 
the motion of the rotator along the torus-
attractor, the value of 

1γ >r

2T

*

t
η  crucially de-

pends on those initial conditions at which 
system enters the chaotic regime. During the 
numerous repetitions of the experiment, 
transition to the regime of synchronization 
occurs from different branches of the 
torque-speed curve. In the shaded domains 
shown in Figure 1, there exist an infinite 
number of branches “growing” from the 
branch corresponding to stationary beating. 
This is called an effect of the scattering of 
the torque-speed curve [Belykh, Pedersen 
and Soerensen, 1988].  
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Figure 1. Torque-speed curve of non-autonomous 
rotator in a zone of main resonance. 

 
2.2 Example 2  

Consider a dynamical system of the form 
[Verichev, Verichev, Erofeyev, 2007] 
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as defined in the cylindrical phase space 

. ( ) 1 3, , ,G x x Tϕ ϕ = ×R
This system governs the dynamics of a vi-

brational system with energy supply of lim-
ited power of the form of an asynchronous 
electric motor with imbalanced rotor 
[Verichev, Verichev and Erofeyev, 2007; 
Alifov and Frolov, 1990]. We assume that 

, 1 1I µ− = µ  is a small parameter, 
( ) / 2q k m hµ+ =  (dissipation in the “oscil-
latory” part of the system is small enough), 

1 1 0/ 2c r m µλω= , and 1 1 02c r bµ ω= . All 
other combinations of the parameters are not 
treated as small. Also, it is assumed that the 
torque of an asynchronous motor represents 
a linear function of the form 

( )d dM Mϕ δϕ= − , where dM  is a constant 
component (for a DC motor, its value is 
governed by the electric current in the drive 
circuit), and δ  is a coefficient describing 
the moment of resistance forces acting on 
the rotor [Levitsky, 2001]. 

With these assumptions, following the 
aforementioned procedure, system (12) is 
reduced to a Lorenz-type system [Lorenz, 
1963] of the form  
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,
.

x x y
y y Rx xz
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= − + +Λ

σ ρ
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This classical system, for some values of the 
parameters *,σ σ=  * ,= > cR R R  and 

, has a unique at-
tracting limit set in the phase space—strange 
attractor (Lorenz attractor); see Figure 2. 
The statements about the existence of the 
chaotic attractors of a certain type in the ini-
tial system (12) have been made on the basis 
of the existence of the corresponding attrac-
tors in the averaged system (13). To confirm 

that, the Poincare mapping has been plotted 
using the secant hyperplane 

( ) (2 4 / 2σ σ σ= + −cR )

constϕ =  at the 

period 2π ; i.e., ( ) ( )
0 0 2

, , , ,
ϕ ϕ ϕ ϕ π

θ η ξ θ η ξ
= = +

→ . 

For rotational motions, this secant is global. 
The corresponding parameters’ set of system 
(12)is / 1,=qr m   2 0.5,=qr 2.11,=rq  

1 1 0.14,=c r  0.1,µ =  0 1.05,ω =  0.49,δ =  
0.2,λ =  1,=h   0.9674,=dM 0 0.671,=M  

1 0.1,=r  and 0 / 2ϕ π= . These parameters 
result in 9.9,σ =   and 27.39,=R

0.87Λ = − .  
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Figure 2. Lorenz attractor: 
9.7, 27, 1, 28.53Rσ ρ= = Λ = − = . 
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Figure 3. a) Lorenz attractor in the Poincare plane; 
 b) involute of the phase cylinder of the initial sys-

tem. 
 

Fig. 3a shows the asymmetrical Lorenz at-
tractor in the Poincare domain. The slight 
difference between this attractor and that 
shown in Fig. 2 is caused by the change of 
the variables made to reduce system (12) to 
system (13). This change of variables pro-
vides parallel displacement and rotation of 
the system of coordinates. Thus, attractors 
depicted in Figures 3a and 2 represent pro-
jections made at different angles. To make 
them identical, one had to perform an extra 
change of the variables at the Poincare 
plane. However, this is not necessary be-
cause the qualitative forms of attractors are 
quite recognizable. 
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Figure 4 shows the torque curve for 
cR R> . In this case, for any value of the pa-

rameter /ρ σ  from the shaded domain, there 
exists a certain chaotic attractor in the phase 
space of system (13) that is the unique at-
tracting limit set. In other words, in the 
aforementioned interval, there exist an infi-
nite number of chaotic attractors, every one 
of which has individual spatio-temporal 
properties. For each point, bifurcations of 
the homoclinic trajectories and of the corre-
sponding saddle periodic motions occur. 
The temporal average value ( )0,

t
x t t  for 

each attractor is different. Moreover, owing 
to the strong dependence of the trajectories 
on the initial conditions and the finiteness of 
the real averaging interval, this value will 
strongly depend on the initial time .  0t

With respect to a torque curve in the 
shaded domain, one can conclude the fol-
lowing: a) the torque curve in the shaded 
domain is irreproducible—during the quasi-
stationary increase of the parameter /ρ σ  
(constant part of the motor torque), one ob-
tains one curve (branch), but for an opposite 
change (arbitrarily small), one obtains a 
completely different curve; b) the torque 
curve in the shaded domain has an infinite 
number of mixed branches that start at the 
frequency jump points corresponding to the 
ends of solid bold lines. For this reason, the 
torque curve in this zone is not presented. 

Such behavior of the torque curve is an 
aforementioned effect of the scattering of 
the torque curve of the rotator. In particular, 
such effect is known to take place for the 
synchronization of the superconductive 
junction by a microwave field [Mintz, 
1955]. 
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Figure 4. An example of torque-speed curve for the 
following parameters: 10, 25, 5Rσ = = Λ = − . 

 
3 Conclusions 

The proposed technique is quite helpful in 
studying systems with cylindrical and tor-
oidal phase spaces. Other examples of study 
of the dynamics of coupled rotators follow-
ing the proposed procedure can be found in 
[Belykh and Verichev, 1997, 1988a, 1988b; 
Belykh, Verichev and Belykh, 1997; 
Verichev, Verichev and Erofeyev, 2008].  
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