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Abstract
The article studies control algorithms of multiply con-

nected system for dynamic plants with control saturation
and nonlinear cross-connections. The authors of the arti-
cle offer a decentralized control law based on the hyper-
stability criterion. They also use this law to constuct the
MIMO servo system with input saturation. To illustrate
the capability of the proposed decentralized robust con-
trol system the authors use an inverted pendulums con-
nected by a spring.
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1 Introduction
The controlling of the nonlinear large-scale systems

has a very high theoretical and practical importance. Ex-
amples of unstable plants can be found in the various
fields of knowledge. In mechanics, for example, it is
multiply-connected inverted pendulum (which is multi-
ply connected system itself), or the interconnected sys-
tem of several inverted pendulums. In technology – op-
eration of a gas turbine engine at low speeds, or control
of statically unstable aircraft. The tasks of controlling
such plants can also be complicated by the presence of
input signals saturations, which can be caused by some
design features of technical systems, or by the operating
conditions of technical plants.

Methods and techniques of synthesis of the control
systems for nonlinear uncertain plants are quite di-
verse. Noting only some of them ([Monopoli, 1975],
[Emelyanov, and Korovin, 1997], [Miroshnik, Niki-
forov, and Fradkov, 2000], [Khalil, 2002], [Polyak, and
Shcherbakov, 2002], [Bobtsov, 2004], [Bukov, 2006],
[Balandin, and Kogan, 2007], [Kolesnikov, 2012],
[Eremin, Kvan and Semichevskaya, 2010], [Eremin,
Telichenko, and Shelenok, 2010], [Eremin, Telichenko,
and Shelenok, 2011]), let us pay attention to the proce-
dures for constructing robust control systems for nonlin-
ear plants under conditions of control signal saturation.
The presence of such restrictions affects the performance
of control systems and requires the development of spe-
cial approaches or techniques that ensure their parry
([Feng, Zhang, and Palaniswami, 1991], [Wang, and
Sun, 1992], [Zhang, and Evans, 1994], [Yang, Calise,
and Craig, 2003], [Takagi, Nishida, and Kobayashi,
2006], [Takagi, Nishida, and Kobayashi, 2007], [Takagi,
Oya, Wang, and Kobayashi, 2010], [Takagi, Oya, Wang,
and Kobayashi, 2009], [Takagi, Zhuo, Oya, and Wang,
2011], [Takagi, Sato, and Oya, 2011], [Eremin, 2016],
[Eremin, and Shelenok, 2016], [Eremin, and Shelenok,
2017]).

This article develops the results of ([Eremin, 2016],
[Eremin, 2017]) and expands the area of their application
in solving the problem of controlling multiply connected
dynamic plants with nonlinear cross-links when the di-
mensions of vectors of the input and output variables of
the plant coincide.
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2 Preliminaries
This section is devoted to the mathematical models of

the interconnected control system with input saturation
that we can present as input-output model or in the state-
space forms. Also in this section the problem statement
is given.

Let the input-output model of the plant have the fol-
lowing form:

yi(t) = Wi(p)Ui(t) = (1)
= Wi(p){σ(ui(t)) + fi(t) + Fj (yj(t))}

i, j = 1, 2, ..., k; i 6= j,

where p = d/dt is the differentiation operator; Ui(t)
is some generalized input; yT (t) = (y1(t), ..., yk(t)) is
vector of the output signals; uT (t) = (u1(t), ..., uk(t))
is vector of the input signals; fT (t) = (f1(t), ..., fk(t))
is vector of the external disturbances; Fj(yj(t)) are some
functions to describe the nonlinear cross-connections;
σ(ui(t)) is the nonlinear function of saturation

σ(ui(t)) =


σ0i ui(t) > σ0i,

ui(t) |ui(t)| ≤ σ0i,
−σ0i ui(t) < −σ0i,

(2)

where σ0i are known values.
The plant (1), (2) is supposed to satisfy the following

assumptions:

1. Disturbances fi(t) and unknown functions
Fj(yj(t)) satisfy the inequalities

|fi(t)| ≤ f∗i , f∗i = const, ∀t ≥ 0, (3)
|Fj(yj(t))| ≤ F ∗

j , F
∗
j = const > 0, (4)

∀yj(t) 6= 0, Fj(0) = 0,

where f∗i and F ∗
j are unknown numbers.

2. Transfer functions of the linear links have the form
like

Wi(p) =
bi(p)

ai(p)
, i = 1, 2, ..., k, (5)

where ai(p) = pni + a1ip
(ni−1) + ... + anii and

bi(p) = bmi
0i + b

(mi−1)
1i + ... + bmii are normal-

ized polynomials with unknown coefficients; bi(p)
are Hurwitz polynomials, b0i > 0; ai(p) are polyno-
mials with arbitrary roots distribution; deg bi(p) =
mi ≥ 0, deg ai(p) = ni ≥ 1 are unknown de-
grees; (maxni), (maxmi) are known limit values;
ρ = (deg ai(p)− deg bi(p)) = (ni −mi) ≥ 1
are relative orders of the Wi(p); ρi = max ρi =
(maxni −maxmi) are known values;

3. For the direct measurement only vector y(t) is avail-
able, i. e. the variables y1(t), ..., yk(t) (the local
subsystems outputs) are available.

Since unknown values ρi = const belong to a known
interval ρi ≥ ρi ≥ 1 (Assumption 2), it is expedient
(see [Eremin, 2018]) to pass the measurable signals yi(t)
through the outputs filter-correctors (OFC)

yFi(t) = WFi(p)yi(t) = (6)

=

(
Tip+ 1

T ∗
i p+ 1

)ρi−1

yi(t), i = 1, 2, ..., k,

where yFi(t) and yi(t) are respectively output and input
signals; WFi(p) are transfer functions of the OFC; Ti
and T ∗

i are time constants. As a result of serial connec-
tion of the plant (1) and OFC (6) mathematical model
(1) will be transformed like

yFi(t) = WFi(p)Wi(p)Ui(t) = (7)

=

(
Tip+ 1

T ∗
i p+ 1

)ρi−1
bi(p)

ai(p)
Ui(t) =

=
b̃i(p)

ãi(p)
Ui(t) = W̃i(p)Ui(t) =

= W̃i(p){σ(ui(t)) + fi(t) + Fj (yj(t))},
i = 1, 2, ..., k; i 6= j,

where b̃i(p) = bi(p) · (Tip+ 1)
(ρi−1), ãi(p) = ai(p) ·

· (T ∗
i p+ 1)

(ρi−1).
Considering that products WFi(p)Wi(p) have the rela-

tive degrees ∆i = deg ãi − deg b̃i ≥ 1, where deg ãi =
ni + ρi − 1, deg b̃i = mi + ρi − 1 and also taking into
account the identities

W̃i(p) =
bi(p)

ai(p)
·
(
Tip+ 1

T ∗
i p+ 1

)(ρi−1)

= (8)

=
bi(p)

ai(p)
· (Tip+ 1)

(ρi−1)

(T ∗
i p+ 1)

(ρi−ni+mi)
×

× 1

(T ∗
i p+ 1)

(ni−mi−1)
=

=
b̃i(p)

âi(p)
· 1

(T ∗
i p+ 1)

(ni−mi−1)
=

= Ŵi(p) ·
1

(T ∗
i p+ 1)

(ni−mi−1)
,

where âi(p) = ai(p) · (T ∗
i p+ 1)

ρi−ni+mi , deg âi(p) =
= ρi + mi; and choosing a small values for time con-
stants T ∗

i we can show (by analogy with [Eremin, 2018])
that with the respect to

1

(T ∗
i p+ 1)

(ni−mi−1)
∼= 1, i = 1, 2, ..., k,
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it is always permissible to replace model (7) with the
following approximate model

yFi(t) ∼=
b̃i(p)

âi(p)
yi(t) = Ŵi(p)Ui(t) = (9)

= Ŵi(p){σ(ui(t)) + fi(t) + Fj (yj(t))},
i = 1, 2, ..., k; i 6= j,

where the relative degrees of Ŵi(p) will satisfy the
condition ρ̂i = deg âi(p) − deg b̃i(p) = ρi + mi −
− (ρi +mi − 1) = 1. It should be noted that degrees of
numerators (ρi +mi) and denominators (ρi +mi − 1)
of the transfer functions Ŵi(p) are priory unknown.

Let us rewrite model (9) in the state-space form then
can be represented as follows:

dxi(t)
dt

= Nixi(t) + bi
{

âTi xi(t) + σ (ui(t)) + (10)

+ fi(t) + Fi (yj(t))
}
, yFi(t) = cTi xi(t),

xi(t0) = xi0, t ≥ t0 = 0, i, j = 1, 2, ..., k, i 6= j,

where xi(t) =
[
x1i(t), ..., x(ρi+mi)i(t)

]T ∈ R(ρi+mi)

are state vectors; Ni are nilpotent (upper shift)
matrices of (ρi +mi) × (ρi +mi) size; bi =

= [0, ..., 0, 1]
T are vectors of (ρi +mi) × 1

size; âTi =
[
â(ρi+mi)i, ..., â2i, â1i

]
and cTi =

=
[
b̃(ρi+mi−1)i, ..., b̃1i, b̃0i

]
are vectors of (ρi +mi)×1

and (ρi +mi − 1) × 1 sizes with an appropriate coeffi-
cients.

3 Control Goals
Let the main control goal is to provide the desired dy-

namics of the outputs yi(t) that consists in the quality
serving to given signals ri(t), i. e. in achieving follow-
ing conditions at t→∞:

|ri(t)− yi(t)| ≤ ∆0i, ∆0i = const, (11)

where ∆0i are required values.
Wherein the desired dynamics for outputs of the

main control loop yFi and also outputs of the OFC
are formed with the help of command filter-correctors
(CFC) [Eremin, 2018]:

r̂i(t) = WFi(p)ri(t) = (12)

=

(
Tip+ 1

T ∗
i p+ 1

)(ρi−1)

ri(t),

where r̂i(t) are auxiliary command signals.
Then for the plant with OFC (10) that operates in the

conditions of functional and parametric uncertainties it is
possible to formulate following additional control goal:
it is necessary to synthesize an explicit form of the con-
trol law

ui(t) = ui (yFi(t), r̂i(t)) , (13)

so that at measuring only signals yi(t), any initial con-
ditions xi(0), any disturbances fi(t) (3) and nonlinear
cross-connections Fi(yj(t)) (4) at t → ∞ it will fulfill
the following requirements

|y∗i (t)− yFi(t)| ∼= |r̂i(t)− yFi(t)| ≤ ∆̂0i, (14)

where ∆̂0i are maximum allowable errors in the tracking
mode; y∗i (t) are outputs of an implicit reference model
(IRM) in the input-output form:

y∗i (t) =
1

χ−1
∗i p+ 1

r̂i(t) =
χ∗i

p+ χ∗i
r̂i(t), (15)

χ∗i = const > 0.

It is well known that at χ∗i � 0 we can rewrite the
expression (15) like

y∗i (t) ∼= r̂i(t). (16)

Thus, if we provide the additional targets (14), then the
main control targets (11) will be fulfilled by virtue of full
equivalence of the transfer functions in equations (6) and
(12).

Note that for model (10) instead of IRM (15) it is ex-
pedient to consider their equivalent analogues [Eremin,
2018]

y∗i (t) =
χ∗ib̃i(p)

(p+ χ∗i) b̃i(p)
r̂i(t) ∼= (17)

∼=
χ̂∗ib̃i(p)b̃(ρi+mi−1)i

(p+ χ∗i) b̃i(p)
r̂i(t)

where χ̂∗i = χ∗ib̃
−1
(ρi+mi−1)i, that in the state-space can

be represented as follows:

dx∗
i (t)

dt
= A∗ix∗i (t) + biχ̂∗ir̂i(t), (18)

y∗i (t) = cTi x∗
i (t),

x∗
i (t0) = 0, i = 1, 2, ..., k; t ≥ t0 = 0,

where x∗i (t) =
[
x∗1i(t), ..., x

∗
(ρi+mi)i(t)

]T
∈ R(ρi+mi);

A∗i = Ni + biâT∗i = Ni + bi (âi − χ∗ici)
T

is Hurwitz matrix of (ρi +mi) × (ρi +mi) size;
χ∗i, χ̂∗i = const � 0 are large numbers; aT∗i =

=
[
â∗(ρi+mi)i, ..., â∗2i, â∗1i

]
= (ai − χ∗ici)

T
=

=
[
a(ρi+mi)i − χ∗ib̃(ρi+mi−1)i, ..., a2i − χ∗ib̃1i, a1i −

− b̃0i
]T

is a vector which elements are determined
by values of polynomial coefficients calculated from
(p+ χ∗i) b̃i(p)/b̃(ρi+mi−1)i where coefficient at the
highest degree is equal to one.
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4 Main Results
In this section with the help of hyperstability criterion

the synthesis of the control algorithms for the considered
decentralized system is discussed.

Considering the deviation ei(t) =
(
xTi (t)− xi(t)

)
of

the state vectors of the IRM (18) and plant with OFC
(10), the model of this system can be described by the
equations

dei(t)
dt

= A∗iei + biµi(t), (19)

vi(t) = cTi (t)ei(t) = y∗i (t)− yFi(t) = r̂i(t)− yFi(t),
µi(t) = χ̂∗ir̂i(t)− χ∗iyFi(t)− ui(t)−
− (σ(ui(t))− u(t))− fi(t)− Fi(yj(t)),

ei(t0) = −xi0, t =≥ t0 = 0, i, j = 1, 2, ..., k, i 6= j,

where vi(t) and µi(t) are modified outputs and control
signals respectively.

It is well known from ([Eremin, 2016], [Eremin,
and Shelenok, 2016], [Eremin, and Shelenok, 2017],
[Eremin, 2017]) that within the hyperstability criterion,
the determination of the explicit form of the components
ui(t) of the control system (19) is associated with en-
suring the conditions for the existence of two following
inequalities:

Re
[
cTi (jωE− A∗)

−1 bi
]
> 0, ∀ω ≥ 0, (20)

ηi(0, t) = −
∫ t

0

vi(ς)µi(ς)dς > −η20i (21)

η0i = const,∀t > 0, i = 1, 2, ..., k.

Since the frequency inequality (20) is fulfilled due to

cTi (sE− A∗)
−1 bi =

1

χ−1
∗i s+ 1

where s is complex variable; then it is necessary to de-
termine the conditions that lead to inequality (21) fulfill-
ment. Let us show the synthesis of the control law (13)
as follows

ui(t) =
(
h̃1ir̂

2
i (t) + h̃2iy

2
Fi(t) + h̃3i

)
× (22)

× vi(t)δ̃i(t),

τi
dδ̃i(t)

dt
+ δ̃i(t) = δi(t), δ̃i(t)(0) = 0, (23)

δi(t) =

{
1, ∀ [σi(ui(t))− ui(t)] vi(t) ≥ 0,

δ0i, ∀ [σi(ui(t))− ui(t)] vi(t) < 0,
(24)

i = 1, 2, ..., k,

where h̃1i, h̃2i, h̃3i > 0 are some constant values; τi
are time constants of the dynamic switches (23); δi(t)

are switching functions; 0 < δ0i < 1 are scaling factor;
δ̃i(t) are outputs of the dynamic switches (23); it is pos-
sible to satisfy the inequality (21). For this purpose we
define control signal as ui(t) = u1i(t) + u2i(t) + u3i(t)
and rewrite the left side of (21) taking into account (19)
like

ηi(0, t) =

(∫ t

0

u1i(ς)vi(ς)dς− (25)

− χ̂∗i

∫ t

0

r̂i(ς)vi(ς)dς

)
+

(∫ t

0

u2i(ς)vi(ς)dς+

+ χ∗i

∫ t

0

yFi(ς)vi(ς)dς

)
+

(∫ t

0

u3i(ς)vi(ς)dς+

+

∫ t

0

[fi(ς) + Fi(yj(ς))] vi(ς)dς

)
+

+

∫ t

0

[σi(ui(ς))− ui(ς)] vi(ς)dς =

=

3∑
β=1

ηβi(0, t) +

∫ t

0

[σi(ui(ς))− ui(ς)] vi(ς)dς.

If we write for the integral η1i(0, t) taking into account
constraints (2) and condition δi(t) ≥ δ0i following rela-
tion:

η1i(0, t) =

∫ t

0

u1i(ς)vi(ς)dς − χ̂∗i

∫ t

0

r̂i(ς)vi(ς)dς±

± δ0iχ̂2
∗ih1i

∫ t

0

r̂2i (ς)v
2
i (ς)δi(ς)dς ±

1

δ20iχ̂
4
∗ih

2
1i

≥

≥
∫ t

0

[
u1i(ς)− δ0iχ̂2

∗ih1ir̂
2
i (ς)vi(ς)δi(ς)

]
vi(ς)dς−

− 1

δ20iχ̂
4
∗ih

2
1i

,

then we can equate the relation in square brackets to
zero, and obtain the explicit form of u1i:

u1i(t) = h̃1ir̂
2
i (t)vi(t)δi(t), (26)

h̃1i = δ0iχ̂
2
∗ih1i,

where h1i = const > 0 are arbitrary numbers; and ob-
tain for summand η1i(0, t) following fair estimate

η1i(0, t) ≥ −
1

δ20iχ̂
4
∗ih

2
1i

= −η201i, (27)

η01i = const, ∀t > 0.

Let us transform integral η2i(0, t) in the following
way:
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η2i(0, t) =

∫ t

0

u2i(ς)vi(ς)dς + χ∗i

∫ t

0

yFi(ς)vi(ς)dς±

± δ0iχ2
∗ih2i

∫ t

0

y2Fi(ς)v
2
i (ς)δi(ς)dς ±

1

δ20iχ
4
∗ih

2
2i

≥

≥
∫ t

0

[
u2i(ς)− δ0iχ2

∗ih21y
2
Fi(ς)vi(ς)δi(ς)

]
vi(ς)dς−

− 1

δ20iχ
4
∗ih

2
2i

.

Then the component u2i(t) will take the form:

u2i(t) = h̃2iy
2
Fi(t)vi(t)δi(t), (28)

h̃21 = δ0iχ
2
∗ih21,

where h21 = const > 0 are arbitrary numbers; and for
the integral η2i(0, t) we will have the estimate like:

η2i(0, t) ≥ −
1

δ20iχ
4
∗ih

2
2i

= −η02i, (29)

η02i = const, ∀t > 0.

We can transform the integral η3i(0, t) as follows:

η3i(0, t) =

∫ t

0

u3i(ς)vi(ς)dς+

+

∫ t

0

(fi(ς) + Fi(yj(ς))) vi(ς)dς±

± δ0ih3i
∫ t

0

(f∗i + F ∗
i )

2
v2i (ς)δi(ς)dς ±

1

δ20ih
2
3i

≥

≥
∫ t

0

[
u3i(ς)− δ0ih3i (f∗i + F ∗

i )
2
vi(ς)δi(ς)

]
×

× vi(ς)dς −
1

δ20ih
2
3i

.

The component u3i(t) is synthesized in the following
form

u3i(t) = h̃3ivi(t)δi(t), (30)

h̃3i = δ0i (f∗i + F ∗
i )

2
h3i,

where h3i = const > 0 are arbitrary numbers; then for
η03i(0, t) we can obtain following estimate

η03i(0, t) ≥ −
1

δ20ih
2
3i

= −η03i, (31)

η03i = const, ∀t > 0.

Thus the integral (25) with respect to the estimates
(27), (29) and (31) will satisfy the inequality like

ηi(0, t) ≥
∫ t

0

(σi(ui(ς))− ui(ς)) vi(ς)dς− (32)

− 1

δ20iχ̂
4
∗ih

2
1i

− 1

δ20iχ
4
∗ih

2
2i

− 1

δ20ih
2
3i

.

If now, similarly to [Eremin, 2017], the integral on the
right side of this inequality is rewritten as

∫ t

0

(σi(ui(ς))− ui(ς)) vi(ς)dς = (33)

=

∫ t∗

0

(σi(ui(ς))− ui(ς)) vi(ς)dς+

+

∫ t

t∗

(σi(ui(ς))− ui(ς)) vi(ς)dς,

where t∗ is a moment in time starting from which in the
considered system a condition |ui(t)| ≤ σ0i is obvious,
then it can be argued that the following inequalities will
be true:

∣∣∣∣∫ t∗

0

(σi(ui(ς))− ui(ς)) vi(ς)dς
∣∣∣∣ ≤ η204i, (34)

η04i = const, ∀t ∈ [0; t∗]

due to the boundedness of integrable functions on a finite
time interval;

∫ t

t∗

(σi(ui(ς))− ui(ς)) vi(ς)dς = 0, ∀t ≥ t∗, (35)

since at t > t∗ it will be fair σi(ui(t)) = ui(t).
Therefore, taking into account conditions (33) and

(34), relation (32) will satisfy the estimate

ηi(0, t) ≥ −
1

δ20iχ̂
4
∗ih

2
1i

− 1

δ20iχ
4
∗ih

2
2i

− 1

δ20ih
2
3i

− η204i =

= −η201i − η202i − η203i − η204i = η20i,

that confirms the fulfillment of inequality (21).
Remark. In [Khalil, 2002] it was noted that one of the

disadvantages of the strong feedback observers is emer-
gence of peaks in transient processes which often lead to
the system instability. In the considered case a similar
situation may arise because of fast-acting OFC. Indeed
the OFC are forcing links at the output of which at small
values of time constants T ∗

i and non-zero initial condi-
tions as a rule significant peak emissions are formed.

Therefore, in order to weaken the influence of peaks
on the formation of control signals, similar to [Khalil,
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2002], we limit the output of the OFC using nonlinear-
ities of the saturation type and rewrite the control law
(22) – (24) as follows

ui(t) =
(
h̃1ir̂

2
i (t) + h̃2isat (yFi(t))

2
+ h̃3i

)
· (36)

· vi(t)δ̃i(t),

τi
dδ̃i(t)

dt
+ δ̃i(t) = δi(t), δ̃i(t)(0) = 0, (37)

δi(t) =

{
1, ∀ [σi(ui(t))− ui(t)] vi(t) ≥ 0,

δ0i, ∀ [σi(ui(t))− ui(t)] vi(t) < 0,
(38)

i = 1, 2, ..., k.

5 Simulation
In this section we apply the obtained decentralized

nonlinear robust regulator to control two inverted pen-
dulums connected by a hard spring (Fig. 1).

Figure 1. Inverted pendulums

Each pendulum is positioned by a control torque
ui(t), i = 1, 2 applied by servomotor at its base. We
assume that only angular displacements θ1(t) and θ2(t)
are available to the direct measurements Nonlinear math-
ematical model which describes the motion of the such
pendulums can be represented as follows [Karimi, and
Menhaj, 2010]:



x11(t)

dt
= x12(t),

dx12(t)

dt
=

(
m1gr

j1
− kr2

4j1

)
sin(x11(t))+

+
kr

2j1
(l − b) + α1

sat(u1(t))

j1
+

+
kr2

4j1
sin(x21(t)),

(39)

y1(t) = x11(t), y1(0) = 0.5;

x21(t)

dt
= x22(t),

dx22(t)

dt
=

(
m2gr

j2
− kr2

4j2

)
sin(x21(t))+

+
kr

2j2
(l − b) + α2

sat(u2(t))

j2
+

+
kr2

4j2
sin(x11(t)),

y2(t) = x21(t), y2(0) = −0.5,

where x11(t) = θ1(t) and x21(t) = θ2(t) are verti-
cal angular displacements of the pendulums; m1 = 2 kg
and m2 = 2.5 kg are pendulums end masses; j1 = 0.5
kg·m2 and j2 = 0.625 kg·m2 are moments of inertia; k =
100 N/m is the spring constant; l = 0.5 m is the natural
length of the spring; r = 0.5 m is the pendulum height;
α1 = α2 = 25 are the control input gains; g = 9.81 m/s2

is the gravitation acceleration; b = 0.4 m is the distance
between the pendulums binges, b < 1 indicates that the
pendulums repel one another when both are in the up-
right position.

Functions sat(·) = σ(·) represent nonlinearity of the
actuators and set as follows

sat (u1(t)) = σ1 (u1(t)) = (40)

=


17, u1(t) > 17,

u1(t), |u1(t)| ≤ 17,

−17, u1(t) < −17;

sat (u2(t)) = σ2 (u2(t)) =

=


15, u2(t) > 15,

u2(t), |u2(t)| ≤ 15,

−15, u2(t) < −15.

We define dynamics of the OFC and CFC like

yFi =
0.05p+ 1

0.001p+ 1
yi(t),

r̂i(t) =
0.05p+ 1

0.001p+ 1
ri(t).

At first, let us attempt to regulate the angular position
of each pendulum to zero. In this case we define com-
mand signals of the subsystems as r1(t) = r2(t) = r∗ =
0. In the course of simulation parameters of the robust
regulator were chosen with following values:

h̃1i = 500, h̃2i = 300, h̃3i = 300, (41)
δ0i = 0.2, τi = 0.2,

sat(y=Fi(t)) =


10, yFi(t) > 10,

yFi(t), |yFi(t)| ≤ 10,

−10, yFi(t) < −10,

i = 1, 2.

In Fig. 2 and Fig. 3 the pendulums positions and the
signals r∗ are depicted.
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Figure 4. Control torque u1(t) of the first pendulum

Figure 5. Control torque u2(t) of the fpendulum

Figure 6. Desired trajectory r1(t) and the first pendulum actual po-
sition y1(t)

Figure 7. Desired trajectory r2(t) and the first pendulum actual po-
sition y2(t)

Figure 2. Desired trajectory r∗ and the first pendulum actual position
y1(t)

Figure 3. Desired trajectory r∗ and the second pendulum actual po-
sition y2(t)

In Fig. 4. and Fig. 5 the dynamics of control torques
applied at pendulums actuators are depicted.

At second, we set the desired trajectory of each pendu-
lums as follows

r1(t) = sin(6.28t), (42)
r2(t) = 0.5 sin(9.42t), (43)

and simulate the considered system with the same reg-
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Figure 8. Control torque u1(t) of the first pendulum

Figure 9. Control torque u2(t) of the first pendulum

ulator parameters (41). The results of the system simu-
lation are depicted in Fig. 6 – 9.

From the presented results, one can see that the pro-
posed control algorithm (36) – (38), (41) ensures high
quality of the system for various operating modes (sta-
bilization of the pendulums position and the movement
of the pendulums along given trajectories) without re-
configuring the parameters of the regulator (41). In both
cases, due to the formation of control torques, a good
enough performance of the control system is ensured
(control errors in both local control loops are practically
equals zero).

6 Conclusion
With the help of hyperstability criterion, the solution

of the problem of decentralized control for class of mul-
tiply connected dynamic plant which contains nonlinear
cross-links is considered. Using the high-speed dynamic
correctors and implicit reference model the robust con-
trol law is synthesized. This robust regulator, as it is
shown at the stage of simulation in relation to the control
of two inverted pendulums, makes it possible to achieve
a given control goal with a sufficiently high quality.

The obtained results may be useful to construct the
control system for mechanical systems such as control
systems for robotic manipulators. Also an approach con-
sidered in paper can be used for developing the control
system for plants which contain state delay.
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