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Abstract
The paper is about the connection between material op-

timization in dynamics and a novel concept of dynamic
materials (DM) defined as inseparable union of a frame-
work and the fluxes of mass, momentum, and energy ex-
isting in time dependent material formations. An exam-
ple of a spatial-temporal material geometry is discussed
as illustration of a DM capable of accumulating wave
energy.

Finding the optimal material layouts in dynamics
demonstrates conceptual difference from a similar pro-
cedure in statics. In the first case, the original con-
stituents are distributed in space-time, whereas in the
second - in space alone. The habitual understanding of
a material as an isolated framework has come from stat-
ics, but a transition to dynamics brings in a new compo-
nent - the fluxes of mass, momentum, and energy. Based
on Noether theorem, these fluxes connect the framework
with the environment into inseparable entity termed dy-
namic material (DM). The key role of DM is that they
support controls that may purposefully change the mate-
rial properties in both space and time, which is the main
goal of optimization.

1 Dedication
This paper is dedicated to the memory of Iliya Izraele-

vich Blekhman –– an outstanding scholar of the world
caliber, one of the founders and main contributors to
modern non-linear mechanics. Through many long
years, I have been among those who enjoyed his friend-
ship, but through the last two decades, our scientific in-
terests became mutual, and our intensive professional
discussions continued until his passing.

These discussions were captivating because we both
had a feeling that we had touch based a universal con-
cept in material science and optimization, that developed
into what is known to-day as the concept of dynamic ma-
terials (DM), i.e., materials with space-time dependent
properties. We were mostly concerned with bringing the
relevant mathematics as close as possible to the first prin-

ciples. A deeper physical understanding of this connec-
tion has led to noticeable simplification of solutions to
problems of control and optimal design in material dy-
namics, specifically dealing with formations that exist in
space and time.

The original ideas have been published in 2000 in a
brief joint paper [Blekhman and Lurie, 2000], devel-
oped in subsequent publications (e.g., [Blekhman, 2007;
Lurie, 2009; To, 2009; Shui et al., 2014; Shui et al.,
2015; Lurie and Weekes, 2006; Lurie et al., 2009]), and
summarized in the monograph [Lurie, 2007] published
by Springer in two editions (2007 and 2017). Iliya′s pas-
sion for new ideas always inspired me through this work,
and remains in my memory as indefeasible feature of his
unforgettable personality.

2 Materials in Statics and Dynamics
Material optimization, after several millennia of its

progress as an art, began to transform into science — a
part of applied mathematics — only several decades ago.
A theoretical basis for this transformation has roots in
the calculus of variations, with addition of some specifics
put forth due to dissimilar applications. The first stage of
this development was related to statics, with its mathe-
matical embodiment being the elliptic equations.

These studies introduced composites as an almost in-
evitable element of optimal design, that received imple-
mentation in modern technology. However, even in their
modified constructive version, such formations demon-
strate limited use because they are not adjusted to the
temporal variations of environment. To be able to ad-
equately handle dynamics, a material medium must it-
self be time-dependent, i.e., its properties should vary
in both space and time. Any substance maintaining such
variation has been termed a dynamic material (DM). The
main difference between conventional materials and DM
is that the first exist in space alone, and the second de-
velop in space-time and cannot exist isolated from their
environment. This connection is realized through the
exchange of mass, momentum, and energy between the
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two media. The well-known Noether Theorem says that
for a system with Hamiltonian that depends explicitly on
time (be it because of material motion or due to the prop-
erty change alone, with immovable material framework)
– for every such system there is no conservation of en-
ergy. This means the existence of energy fluxes between
the system and the environment. The fluxes are insep-
arable from the framework, and their union is precisely
what we call a DM. Being a little abstract (this defini-
tion goes beyond the stock notion of a material used in
everyday language), it nevertheless clearly explains its
physical meaning. Particularly, every DM appears to be
a thermodynamically open system.

There is an impressive multitude of DM around us, the
most remarkable one created by mother Nature as a liv-
ing tissue. Many men made examples came into being
due to recent technologies, e.g., rockets, robots, tunable
transmission lines, etc. The energy gain or loss is main-
tained due to an external agent committing the work that
pumps the energy into a system or releases it into the en-
vironment. The presence of this agent is an inseparable
attribute of any dynamic material.

DM is an entity that exists in space-time, i.e., in
pseudo-Euclidean Minkowski space. These formations
can be classified into two conceptually distinct cate-
gories named activated and kinetic. The activated DM
demonstrate the spatial-temporal variation of their mate-
rial property pattern alone, with no actual motion of a
material framework. Contrary to that, the kinetic DM
may be heterogeneous in space and involved only in
mechanical motion through the property pattern that re-
mains immovable in a laboratory frame.

An interesting illustration of this difference belongs to
L.I. Slepyan. He noticed that a non-linear elastic body is
always a kinetic DM because its properties are immersed
into it as nonlinearities and cannot move independently
from the framework. Contrary to that, a linear elastic
body may become an activated DM, with its property
pattern performing an independent motion.

The spatial-temporal nature of DM means that their
properties are transformed by a Lorentz group, contrary

to the Euclidean group in statics. Its distinct embodiment
is given by electrodynamics of moving bodies where it
is appropriate to consider heterogeneous formations as-
sembled from ordinary materials in space-time.

Remark. Consider two points on a temporal interface
t = const between two contacting dielectrics in space-
time. None of these points can be interpreted as an event
that is a consequence of different event occurred at an-
other point on the same interface because otherwise the
causality principle would be violated. This also holds
for any two points on any space-like interval for which
a temporal boundary is an example. This means that no
space-like interval can be a route for a signal, so its slope
dz/dt may be arbitrarily large without violation of rela-
tivity. This criterion allows for a substantial extension of
material geometry in space-time.

3 Examples of Material Geometries with DM
Below we discuss several examples of material struc-

tures in 1D space plus time, typical for electromagnetic
theory but universally applicable elsewhere.

Assume we have two isotropic dielectrics, each with
material parameters α = (εµ)−1/2 and γ = (µ/ε)1/2;
let their wave impedances γ1 and γ2 match (γ1 = γ2),
but the phase velocities α1 and α2 differ from each other:
α1 < α2 , so the second dielectric is fast, and the first is
slow. Also, let the dielectrics contact along the time-like
plane z = 0 (the spatial interface). An incident electro-
magnetic wave travelling through the uniform material 1
along the z-axis (i.e., normally to the interface) will then
produce no reflected wave moving back into material 1
after it reaches the interface z = 0. The same holds if
we exchange materials 1 and 2 when they contact along
the same plane. In both cases, the only secondary wave
will be a transmission wave travelling into material 2 in
the first case, and into material 1 in the second (Fig. 1).

A similar situation arises if the interface between ma-
terials is temporal, say, t = t0 (Fig. 2). Once γ1 = γ2,
the incident wave originally travelling through material
1 generates, as before, only one secondary wave propa-
gating with velocity α2 through material 2 in the same
direction as the incident wave.

Formally, the wave routes in Figs. 1 and 2 look similar,
with no reflections,but they differ from each other in the
energy performance. Being continuous at spatial inter-
faces, the energy changes at temporal interface by factor
α2/α1; so it increases when α2 > α1, and decreases oth-
erwise [Morgenthaler, 1958]. Given these observations,
we can easily design a material geometry in space-time
capable to accumulate energy and concentrate it in pro-
gressively narrowing pulses. To achieve that, it is nec-
essary to avoid the energy losses down the road. This
means that the wave routes should never enter the slow
material from fast across the temporal transients; they
may enter it only across the spatial interface where no
energy is lost. So all appropriate crossings either leave
the energy continuous at spatial interfaces, or add it to
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the wave at temporal transients when crossing them from
slow material to fast. This is true for both forward and
backward waves that can be discussed independently be-
cause of no reflection at both types of transients. So we
may discuss, for example, the right going waves.

One should now ask if there exists an assembly of rect-
angular domains in (z, t)-plane that supports the wave
routes that ensures the energy accumulation. And here
is the key point: a doubly periodic checkerboard prop-
erty layout (Fig. 3) provides such support for a range
of lattice parameters m1, n1. A typical property period
(see Fig.4) is a square 1 × 1, with materials 2 and 1 oc-
cupying, respectively, the diagonal rectangles m1 × n1,
(1−m1)× (1−n1), and m1× (1−n1), (1−m1)×n1.
The range for m1, n1 has been precisely specified by the
sharp bounds determined in [Lurie et al., 2009]. Specif-
ically, for the right going waves in Fig. 3, the energy
is accumulated in the array of progressively sharpening
pulses (limit cycles) composed from densely compress-
ing wave routes. An attentive reader will find from this
figure that the crossings of wave routes with material in-
terfaces become, after a few periods, consistent with the
description given above.

Figure 3. A closer look at limit cycles

This solution is perfectly understandable due its ut-

most simplicity that comes from the physical clarity. Its
understanding needs no more than the Snell′s law plus
some attention to the kinematics of the wave routes. The
energy gain is hidden in the formulae of Morgenthaler
[Morgenthaler, 1958] and its special analysis for our pur-
poses is excessive.

After the original works [Blekhman and Lurie, 2000;
Blekhman, 2007; Lurie, 2009; To, 2009; Shui et al.,
2014; Shui et al., 2015; Lurie and Weekes, 2006; Lurie
et al., 2009; Lurie, 2007] had been published, there be-
gan to appear papers of other authors who at last paid
their attention to the media with time-dependent proper-
ties. Examples of such publications are given by [Bialan-
calana et al., 2007; Taravati, 2018; Huidobro′ et al.,
2019]. After long and excessive mathematics, their au-
thors arrived at the results that almost totally duplicate
findings published before in [Blekhman and Lurie, 2000;
Blekhman, 2007; Lurie, 2009; To, 2009; Lurie and
Weekes, 2006; Lurie et al., 2009; Lurie, 2007], but with
no reference to these original works as if they had never
existed. This fact illustrates one more time how long-
sighted was Professor Blekhman as he became one of
those who first put forth these ideas.

4 Conclusion
An idea of dynamic materials is implemented to-

ward finding the material geometry supporting the en-
ergy accumulation in a space-time dependent non-
homogeneous formation.
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