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We explore stabilization of unstable periodic orbits
x(t) ∈ Γ of ordinary differential equations

ẋ(t) = f0(x(t)). (1)

Stabilization of Γ is attempted via time-delayed feed-
back systems of the general form

ẋ(t) = f(x(t), g(x(t), x(t− τ))) (2)

with f(x, 0) = f0(x) and g(x, x) = 0 for all x.
If we choose the delay τ = np to be an integer mul-

tiple n = 1, 2, 3, . . . of the minimal period p, then
Γ remains a periodic orbit of (2) because the time-
delayed feedback control g vanishes. Therefore the
feedback control (2) is noninvasive on Γ. Neverthe-
less the linearized stability properties of Γ in the dif-
ferential delay system (2) may differ markedly from
(1), and in fact some unstable periodic orbits Γ of
(1) may be stabilized by suitable choices of f and
g. This idea of time-delayed feedback control goes
back to Pyragas [Pyragas, 1992]. Applications to prob-
lems from physics, chemistry, biology, and medicine
can be found in [Pyragas and Tamas̆evic̆ius, 1993;
Bielawski, Derozier, and Glorieux, 1994; Pierre, Bon-
homme and Atipo, 1996; Hall, Christini, Tremblay,
Collins, Glass and Billette, 1997; Sukow, Bleich, Gau-
thier and Socolar, 1997; Lüthje, Wolff and Pfister,
2001; Parmananda, Madrigal, Rivera, Nyikos, Kiss
and Gáspár, 1999; Krodkiewski and Faragher, 2000;
Fukuyama, Shirahama and Kawai, 2002; Loewenich,
Benner and Just, 2004; Rosenblum and Pikovsky,
2004; Popovych, Hauptmann and Tass, 2005; Schikora,
Hövel, Wünsche, Schöll and Henneberger, 2006;
Schöll, Hizanidis, Hövel and Stegemann]; see also
[Schimansky-Geier, Fiedler, Kurths and Schöll, 2007;
Fiedler, Flunkert, Georgi, Hövel and Schöll, 2007b;
Fiedler, Flunkert, Georgi, Hövel and Schöll, 2008].

It has been claimed by some authors, and quoted
by many more, that delay stabilization of periodic or-
bits is not possible when the number of real Floquet
multipliers µ > 1 of Γ is odd; see [Socolar, Sukow
and Gauthier, 1994; Just, Bernard, Ostheimer, Rei-
bold and Benner, 1997; Nakajima, 1997; Nakajima
and Ueda, 1998; Harrington and Socolar, 2001; Pyra-
gas, Pyragas and Benner, 2004; Pyragas and Pyragas,
2006]. We have refuted such a qualitative constraint,
which had been proliferated under the name of “odd
number limitation”. Our examples of successful de-
lay stabilization are planar, dimx = 2, with a sin-
gle unstable Floquet multiplier µ > 1 near 1; see
[Fiedler, Flunkert, Georgi, Hövel and Schöll, 2007a;
Just, Fiedler, Flunkert, Georgi, Hövel and Schöll,
2007; Fiedler, Flunkert, Georgi, Hövel and Schöll,
2007b; Fiedler, Flunkert, Georgi, Hövel and Schöll,
2008; Fiedler, Yanchuk, Flunkert, Hövel, Wünsche and
Schöll, 2008]. To stabilize Γ we have used the special
form

ẋ(t) = f0(x(t)) +B(x(t− τ)− x(t)) (3)

where the nonlinearity f0 and the matrix B both com-
mute with rotations of x. By these results noninvasive
time-delayed feedback control of periodic orbits Γ has
become a more promising way to go.

Conversely, and as a caveat, we present a quantita-
tive constraint on time-delayed feedback stabilization
of the quite general form (2). Again we consider f, g
which commute with rotations, and periodic orbits Γ
which rotate at constant speed. As before let p denote
the minimal period of Γ and µ > 1 the uncontrolled
unstable Floquet multiplier in (1).

Theorem. Noninvasive delay stabilization by a multi-
ple period time delay τ = np is possible if, and only if,
the unstable Floquet multiplier µ of the periodic orbit



satisfies the quantitative constraint

µ < exp(9/n). (4)

Our previous counterexamples to the “odd number
limitation” have been obtained near bifurcations, only,
where µ ≈ 1 and the constraint (4) becomes void. For
the case of Hopf bifurcation from equilibria to rotat-
ing waves see [Fiedler, Flunkert, Georgi, Hövel and
Schöll, 2007a; Just, Fiedler, Flunkert, Georgi, Hövel
and Schöll, 2007; Fiedler, Flunkert, Georgi, Hövel and
Schöll, 2007b; Fiedler, Flunkert, Georgi, Hövel and
Schöll, 2008]. The case of saddle-node bifurcations
of rotating waves is considered in [Fiedler, Yanchuk,
Flunkert, Hövel, Wünsche and Schöll, 2008].
The constraint µ < exp(9) = 8103.1 . . ., beyond

which time-delayed feedback stabilization fails en-
tirely, is large when a delay τ = p equal to the minimal
period p can be realized. Delayed feedback control at
minimal period will therefore fail for violently unstable
planar rotating waves, only. Even a moderately unsta-
ble Floquet multiplier µ = 2 cannot be stabilized, on
the other hand, when the experimentally feasible de-
lay τ = np exceeds n = 12 minimal periods. Such a
quantitative constraint becomes relevant, for example,
in laser optics where Γ oscillates at very high frequen-
cies.
A detailed proof of the theorem will be given in

[Fiedler, Flunkert, Georgi, Hövel and Schöll, 2008].
We can only sketch the argument here. Because (1),(2)
commute with rotations the periodic orbit is harmonic,
x(t) = x(0) exp(2πit/p). Passing to co-rotating coor-
dinates freezes the rotating wave to become a circle of
equilibria, and retains the autonomous form of (1),(2).
Linearization of (2) provides a characteristic equation
for Floquet exponents η of the periodic orbit Γ. Scaling
and eliminating τ = np by linear scaling we obtain

0 = η − a+ b0w + b1wη + b2w
2η. (5)

Here w = (exp(−η)− 1)/η and τ = np. The original
Floquet multiplier µ of the periodic orbit Γ of (1) is
given by

µ = exp((a/τ)p) = exp(a/n). (6)

To prove the theorem we have to discuss unstable solu-
tions η of the characteristic equation (5) with positive
real part <η > 0. Their total number u, including al-
gebraic multiplicities, denotes the unstable dimension
of the periodic orbit Γ. Thus the theorem reduces to
showing that

u = 0 ⇐⇒ a ≤ 9 (7)

for suitable choices of τ, b0, b1, b2.
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Figure 1. Qualitative bifurcation diagrams I – VI in the
(b0, b1)-plane. Vertical b1-axis at b0 = −a coincides with
zero eigenvalues η. Takens-Bogdanov point TB, emanating
Hopf bifurcation curve, and resulting unstable dimensions u
of slowly oscillating eigenvalues are indicated. Stability re-
gion u = 0 in gray.

Even after elimination of τ the characteristic equation
(5) contains a cumbersome four remaining real param-
eters a > 0, b0, b1, b2. Figure 1 shows six resulting
qualitative bifurcation diagrams I – VI of (a, b2) in the
(b0, b1)-plane, not drawn to scale. Figure 2 indicates
corresponding regions I – VI of (a, b2) where these bi-
furcation diagrams hold. All curves which define the
bifurcation diagrams in this paper can be parametrized
explicitly, due to linearity of the characteristic equation
(5) in the four parameters. Together the bifurcation dia-
grams describe the behavior of the characteristic equa-
tion in these four parameters, and prove the theorem as
follows.
We first address necessity of the multiplier bound
a = 9 and show that u ≥ 1 for a > 9. For (a, b2) in
regions IV–VI of figure 2 we indeed observe absence
of stability regions u = 0 in figure 1. We always have
u = 1 at b0 = b1 = b2 = 0 > −a, because the rotating
wave of the ODE (1) is unstable by assumption. Sta-
bility changes can only occur by eigenvalues η = iy
which cross the imaginary axis at an imaginary Hopf
pair ±y 6= 0, or at y = 0. At y = 0 eigenvalues cross
the imaginary axis only as b0 crosses through b0 = −a.
This accounts for odd parity of u, and hence for insta-
bility, whenever b0 > −a in figure 1.
As the top solid curve is crossed from region V into re-

gion I, by (a, b2) in figure 2, the Hopf curve (b0, b1) of
slow imaginary eigenvalues with 0 < y < 2π touches
the vertical b1-axis at b0 = −a and enters the left side,
in figure 1, where the parity of u is even. A stability
region is thus created where we had u = 2 before.
Similarly consider (a, b2) crossing the top solid curve

from region V into region II between TBT and TB0, in
figure 2. The tangent direction of the emanating Hopf
branch (b0, b1) then switches from right to left in fig-
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Figure 2. Numerical plots of regions I – VI in the (a, b2)-
plane where the (b0, b1) bifurcation diagrams of figure 1
hold. Thick solid curves emanating from a = 9, b2 = −1/2

to the left bound regions I–III where stability <η < 0

holds for suitable choices of b0, b1 near the Takens-Bogdanov
point. Top: global diagram. Bottom: zoom into stability re-
gion.

ure 1 and points vertically downwards along the line
b2 = 1−a/6 between TBT and TB0. The switch again
generates a stability region in the (b0, b1)-plane. At
TBT a codimension 4 Takens-Bogdanov point occurs
where the Hopf and zero curves emanate with identical
tangent and curvature.
As (a, b2) crosses the bottom solid curve from region

IV into region III, in figure 2, the Hopf curve (b0, b1)
of slow eigenvalues 0 < y < 2π crosses the Takens-
Bogdanov point TB in figure 1 and forms a loop. The
loop of the Hopf curve creates higher instability u = 4
inside the loop, but also produces a stability region
u = 0 near TB. The higher instability loop of (b0, b1)
terminates at a Hopf cusp curve of (a, b2) which sepa-
rates regions II and III in figure 2.
The (a, b2) region VI is generated by an analogous

cusp in the odd parity region b0 > −a of (b0, b1). How-
ever, stability is not recovered. Similarly, rapid Hopf
bifurcations with y > 2π can only increase instability
further. Therefore Pyragas stabilization fails for a > 9.
Conversely we have to show that time-delayed feed-

back stabilization is possible for a < 9 and suitable
choices of b0, b1, b2. The choice b2 = −1/2 keeps us
in region II for all 0 < a < 9. The dashed (a, b2)
curves in figure 2 indicate when the (b0, b1) curves
of rapid Hopf bifurcations with y > 2π move across
the Takens-Bogdanov point TB at b0 = −a, b1 =
−a/2 + b2 + 1 = (1 − a)/2, in figure 1. None of
these curves interferes with our choice of b2 as long as
we choose b0 = −a− β, b1 = (1− a)/2− β for suf-
ficiently small positive β. Thus stabilization remains
unaffected by rapid Hopf bifurcation. This completes
the sketch of proof of our theorem.
We conclude that stabilization by time-delayed feed-

back control is ruled entirely – granted as well as
constrained – by the codimension 4 Takens Bogdanov
point TB0 at

a = 9, b0 = −9, b1 = −4, b2 = −1/2. (8)

At this point the Hopf branch (b0, b1) emanates at order
y4 from TB, rather than at the generic order y2.
Stabilization of equilibria by linear rank-1 feedback

matrices is known as pole assignment in classical con-
trol theory; see for example [Wonham, 1985]. That
special case detB = 0 corresponds to b2 = 0 in
(3). By figure 2 time-delayed feedback stabilization by
rank-1 feedback matrices B is feasible if, and only if,

µ < exp(6/n). (9)

Applicability is thus restricted by the aggravated con-
straint exp(6) = 403.4 . . . for the unstable Floquet
multiplier µ. Rank-1 delayed feedback stabilization is
therefore limited to multiples n ≤ 8 of the minimal
period p in the case of planar rotating waves, even for
moderate Floquet multipliers µ = 2.
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