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Abstract
The paper studies the robust control for multi-machine

power systems under parametric uncertainties, perturbed
mechanical input power and unknown variable commu-
nication time-delay. Only relative speed of each electri-
cal generator is available for measurement. The theoreti-
cal investigations show that the proposed algorithm syn-
chronizes the multi-machine power system with the re-
quired accuracy in the normal mode and under symmet-
rical 3-phase short circuit faults which occur on trans-
mission lines. Numerical investigations illustrate the ef-
ficiency of the proposed scheme for the three machines
and the New England Power system benchmark.
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1 Introduction
Currently there is a growing interest in control of

multi-machine power systems especially in the context
of Smart Grid [Butler, 2009; Farhangi, 2010; Liserre,
Sauter, and Hung, 2010]. Since most components of
power systems are electric generators, design of a sim-
ple and reliable controller for generators is important for
quality control.

There exist a lot of methods for control of multi-
machine power systems. In [Qu et al., 1992] decen-
tralized robust control algorithm for power systems is
considered. Transient control of the sustained oscilla-

tions that can occur after a major disturbance is inves-
tigated. The proposed control strategies are linear and
require only local relative angle and velocity measure-
ments for the model case, plus the measurement of me-
chanical power if turbine dynamics are included. The
overall power system is shown to be exponentially sta-
ble in the large. The results are obtained without any
linearization of the power system model.

In [Wang, Hill, and Guo, 1998; Guo, Hill, and Wang,
2000] the robust controller is designed for a multi-
machine power system modeled by differential-algebraic
equations of the third order obtained in [Anderson and
Fouad, 1977; Bergan, 1996]. It is assumed that parame-
ters of power system are partially known and angle, rel-
ative speed, active electrical power and mechanical in-
put power of each generator are available for measure-
ment. The authors solve the problem in two steps. At
the first step the authors use direct feedback lineariza-
tion while at the second step they apply robust algorithm
for control of linear model. Note that the control system
of [Wang, Hill, and Guo, 1998; Guo, Hill, and Wang,
2000] may become unstable when faults (a symmetri-
cal 3-phase short circuit fault which occur on one of the
transmission lines) occur. The faults should be removed
by opening the breakers of the fault lines.

In [Pogromsky, Fradkov, and Hill, 1996] adaptive syn-
chronization algorithm is proposed for multi-machine
power systems which models are described by the sec-
ond order differential equations. Synthesis of control law
is based on passivity and speed gradient method.
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The work [Ortega et al., 2005] is devoted to control
of multi-machine power systems where generator mod-
els are presented by the third order differential-algebraic
equations [Anderson and Fouad, 1977; Bergan, 1996].
The models of the load, the transmission lines and the
infinite buses are described by the algebraic equations.
The authors use the interconnection and damping as-
signment passivity-based control for synchronization of
power system. Synthesized control algorithm requires
measurements of the angles, relative speeds and transi-
tion EMF (electromotive force) directed along the trans-
verse axis and parameters of the power system.

The paper [Mahmud, Pota, and Hossian, 2012] de-
scribes the nonlinear observer-based excitation con-
troller for multi-machine power systems. It is assumed
that only angle of each generator is available for mea-
surement and parameters of power system are known.
Exact feedback linearization is used to design the ob-
server. The observed states of power system are directly
used as the input to the controller where the control law
does not need to be expressed in terms of all measured
variables.

In [Leon, Mauricio, and Solsona, 2012] the nonlin-
ear observer-based control for stabilization of power sys-
tems by using the excitation of synchronous generators
is considered. The strategy goal is to attain maximum
damping injection and to increase the transient stabil-
ity, while good voltage regulation performance is main-
tained. For implementation of the control needs sensing
currents and rotor speed, and knowledge of system pa-
rameters.

In [Benahdouga, Boukhetala, and Boudjema, 2012] the
feedback linearization approach and high order sliding
mode control are combined to stabilize and decentralize
nonlinear multi-machine power systems. Each machine
is modeled as an independent uncertain dynamic subsys-
tem where the uncertainty is a disturbance that represents
the effects of the rest of the system on that particular ma-
chine. A local high order sliding mode stabilizer is de-
signed to regulate the machine angle of each generating
unit under high level external disturbances.

Implementation of most existing algorithms [Qu et
al., 1992; Wang, Hill, and Guo, 1998; Guo, Hill,
and Wang, 2000; Anderson and Fouad, 1977; Bergan,
1996; Pogromsky, Fradkov, and Hill, 1996; Ortega et
al., 2005; Mahmud, Pota, and Hossian, 2012; Leon,
Mauricio, and Solsona, 2012; Benahdouga, Boukhetala,
and Boudjema, 2012; Wenhua, Renjie, and Zhonghong,
1993; Tsykunov, 2007; Furtat and Fradkov, 2015; Fur-
tat, Chugina, and Fradkov, 2015] requires measurement
of the state vector for each generator and knowledge of
the power system parameters. Besides the mechanical
input power is constant and known and models of multi-
machine power systems [Qu et al., 1992; Wang, Hill,
and Guo, 1998; Guo, Hill, and Wang, 2000; Anderson
and Fouad, 1977; Bergan, 1996; Pogromsky, Fradkov,
and Hill, 1996; Ortega et al., 2005; Mahmud, Pota, and
Hossian, 2012; Leon, Mauricio, and Solsona, 2012; Be-

nahdouga, Boukhetala, and Boudjema, 2012; Wenhua,
Renjie, and Zhonghong, 1993; Tsykunov, 2007; Furtat
and Fradkov, 2015; Furtat, Chugina, and Fradkov, 2015;
Furtat, 2011; Fradkov and Furtat, 2013; Furtat et al.,
2016; Furtat and Nekhoroshikh, 2018] do not take into
account the possible presence of a communication time
delay. Consider each problem in more detail.

Algorithms [Qu et al., 1992; Wang, Hill, and Guo,
1998; Guo, Hill, and Wang, 2000; Anderson and Fouad,
1977; Bergan, 1996; Pogromsky, Fradkov, and Hill,
1996; Ortega et al., 2005] require the measurement of
the state vector of each generator such as angles and rel-
ative speed of the rotor generators, electrical power, tran-
sient EMF etc. However, the angle and the active elec-
tric power cannot be measured accurately at faults and,
sometimes, in normal mode [Wang, Hill, and Guo, 1998;
Guo, Hill, and Wang, 2000].

In [Qu et al., 1992; Wang, Hill, and Guo, 1998;
Guo, Hill, and Wang, 2000; Anderson and Fouad,
1977; Bergan, 1996; Pogromsky, Fradkov, and Hill,
1996; Ortega et al., 2005; Mahmud, Pota, and Hossian,
2012; Leon, Mauricio, and Solsona, 2012; Benahdouga,
Boukhetala, and Boudjema, 2012; Wenhua, Renjie, and
Zhonghong, 1993] all the algorithms require knowledge
of the power system parameters. For example, if the
faults (symmetrical 3-phase short circuit faults) occur on
transmission lines then these algorithms do not ensure
the synchronization in the multi-machine power system.
That is why these algorithms instant restore of transmis-
sion line with initial parameters is required.

Control systems in [Qu et al., 1992; Wang, Hill, and
Guo, 1998; Bergan, 1996; Pogromsky, Fradkov, and
Hill, 1996; Ortega et al., 2005; Mahmud, Pota, and Hos-
sian, 2012; Leon, Mauricio, and Solsona, 2012] are de-
signed under assumption of a constant mechanical input
power. However, the synchronization loss may occur
if mechanical input power is perturbed. Perturbed me-
chanical input power is a consequence of the mechani-
cal torque ripple or regular oscillations of network loads.
This situation usually occurs if the generators are driven
by the piston engine [Wenhua, Renjie, and Zhonghong,
1993]. Moreover, we can observe low frequency low-
damped processes due to coincidence with the so-called
reverse frequency of diesel and natural vibration fre-
quency of the generator rotor.

Communication time-delays occur in a large geo-
graphic multi-machine power systems. Also, commu-
nication time-delays occur in information transmission
channels, processing, measuring and controlling devices.
In most cases this time delays are unknown and variable.

In the present paper we study the control system design
for multi-machine power systems under parametric un-
certainties, partially measured state vector of each gen-
erator, perturbed mechanical input power and unknown
variable communication time-delay. For design the al-
gorithm use the so-called method of auxiliary loop for
compensation of unknown disturbances in power sys-
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tem. This method was first proposed for compensation
of parametric uncertainties and external bounded distur-
bances in [Tsykunov, 2007]. The idea of this method is
in the introduction of an auxiliary loop with desired pa-
rameters parallel to the plant. The difference between the
output of the plant and the output of the auxiliary loop
gives a function which depends on parametric and exter-
nal disturbances. Then, this function is used for imple-
mentation of control law. Method of [Tsykunov, 2007]
is applied to control of a network of electrical genera-
tors [Furtat and Fradkov, 2015] and a network of electri-
cal generators with perturbed mechanical input power in
[Furtat, Chugina, and Fradkov, 2015]. In [Furtat, 2011]
the method of auxiliary loop is generalized for control
of dynamical systems and in [Fradkov and Furtat, 2013]
for control of dynamical networks with communication
time delay.

In the present paper the results from [Furtat and Frad-
kov, 2015; Furtat, Chugina, and Fradkov, 2015; Furtat,
2011; Fradkov and Furtat, 2013; Furtat et al., 2016; Fur-
tat and Nekhoroshikh, 2018] are generalized for control
of multi-machine power systems with communication
time delay. Moreover, the proposed algorithm is investi-
gated on the New England Power system benchmark.

It is assumed that the relative speed of each generator
is measured. The proposed algorithm provides synchro-
nization of multi-machine power systems with the re-
quired accuracy in the normal mode and under symmet-
rical 3-phase short circuit faults which occur on trans-
mission lines.

The paper is organized as follows. The problem state-
ment is presented in Section 2. In Section 3 the appli-
cation of the auxiliary loop method for control of power
systems and the main result are considered. In Section 4
the efficiency of proposed scheme illustrated by a simu-
lation of a power system consisting of three generators.
Section 5 describes investigation of the proposed algo-
rithm for New England Power system benchmark. Con-
cluding remarks are given in Section 6. Appendix gives
the proof of the auxiliary loop algorithm for control of
power systems.

2 Model of Multi-Machine Power Systems
Consider the multi-machine power systems where i-

th subsystem is described by the following differential-
algebraic equations:

— Mechanical Dynamics:

δ̇i(t) = ωi(t),

ω̇i = − Di

2Hi
wi(t)−

w0

2Hi
∆Pei, i = 1, . . . , k;

(1)

— Electrical Dynamics:

Ė′qi(t) =
1

T ′d0i

(
Efi(t)− Eqi(t)

)
, i = 1, . . . , k; (2)

— Electrical Equations:

Eqi(t) = xadiIfi(t) = E′
qi(t)− (xdi − x′di)Idi(t),

Efi(t) = kciufi(t),

Pei(t) =
∑
j∈Ni

E′
qi(t)E

′
qj(t)Mij sin

(
δi(t)− δj(t)

)
,

Qei(t) = −
∑
j∈Ni

E′
qi(t)E

′
qj(t)Mij cos

(
δi(t)−δj(t)

)
,

Idi(t) = −
∑
j∈Ni

E′
qj(t)Mij cos

(
δi(t)− δj(t)

)
,

Iqi(t) =
∑
j∈Ni

E′
qj(t)Mij sin

(
δi(t)− δj(t)

)
,

Vti(t) =
1

xdsi

√(
E′

qi(t)− x′diIdi(t)
)2

+
(
x′diIqi(t)

)2
,

i = 1, . . . , k.
(3)

Here δi(t) is an angle of the i-th generator with ini-
tial value δi(0) (rad), ωi(t) is a relative speed (rad/s),
ω0 is a synchronous machine speed (rad/s), ∆Pei(t) =
Pei(t)–Pmi(t), Pei(t) is an electrical power, Pmi(t) =
Pmi0 + ∆Pmi(t), Pmi0 is a nominal mechanical input
power, ∆Pmi(t) is a perturbation of mechanical input
power, Di is a damping constant, Hi is an inertia con-
stant (s), T ′d0i is a direct axis transient short circuit time
constant (s), x′di is a direct axis transient reactance, xdi
is a direct axis reactance, xadi is a mutual reactance be-
tween the excitation coil and the stator, kci is a gain of
the excitation amplifier, ufi(t) is an input of the SCR
amplifier of the excitation loop, Eqi(t) is an EMF in the
quadrature axis, Efi(t) is an equivalent EMF in the ex-
citation coil, E′qi(t) is a transient EMF in quadratic axis,
Iqi(t) is a quadratic axis current, Ifi(t) is an excitation
current, Idi(t) is a direct axis current,Qei(t) is a reactive
power, Vti(t) is a i-th generator terminal voltage, Mij is
an i-th row and j-th column element of nodal admittance
matrix at the internal nodes after eliminating all physi-
cal buses, Ni is a set of the adjacent generators for i-th
generator. Assume that only parameters Di, Hi, T ′d0i ,
x′di , xdi, xadi, xdsi, kci, Mij and perturbation ∆Pmi(t)
are unknown and relative speeds ωi(t), i = 1, . . . , k are
available for measurement in the control system. Con-
sider model (1)–(3) under the following assumptions.

Assumptions

1. Unknown parameters of model (1)–(3) belong to
known bounded set Ξ. The perturbation ∆Pmi(t)
and ∆Ṗmi(t) are unknown bounded function.

2. The currents Iqi(t), i = 1, . . . , k are available for
measurement.

3. The faults are symmetrical 3-phase short circuit oc-
curring on transmission lines.

The problem is to design a continuous control law
ufi(t) defined as function of ωi(t), ωj(t)

∣∣
j∈Ni

provid-
ing fulfillment of the following conditions

|δi(t)− δj(t− τji(t))| < ε1,

|ωi(t)− ωj(t− τji(t))| < ε2,
(4)
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for t > T and any value parameters of (1)–(3) from Ξ,
where ε1 > 0, ε2 > 0 are prespecified sufficiently re-
quired accuracies, τji(t) > 0 is an unknown communi-
cation time delay and T > 0 is a transient time.

3 Theoretical Investigation of Robust Algorithm for
Multi-machine Power Systems

Taking into account (3), rewrite (1) and (2) as follows

δ̇i(t) = ωi(t),

ω̇i(t) = − Di

2Hi
ωi(t)−

ω0

2Hi
∆Pei(t),

∆Ṗei(t) = − 1

T ′d0i

∆Pei(t)

+
1

T ′d0i

Iqi(t)
[
kciufi(t) + (xdi − x′di)Idi(t)

]
− 1

T ′d0i

Pmi(t) + E′qi(t)İqi(t)−∆Ṗmi(t).

(5)

Denote

zi(t) =
[
δi(t), ωi(t), ∆Pei(t)

]T
,

Ai =

0 1 0
0 −0.5DiH

−1
i −0.5ω0H

−1
i

0 0 −(T ′d0i)
−1

 ,
Bi(t) =

[
0, 0, kciIqi(t)/T

′
d0i

]T
, L =

[
0, 1, 0

]
,

fi(t) =
1

kciIqi(t)

[
(xdi − x′diIqi(t)Idi(t)

+Pmi(t) + T ′d0iE
′
qi(t)İqi(t)− T ′d0i∆Ṗmi(t)

]
.

Rewrite equations (5) in the form

żi(t) = Aizi(t) +Bi(t)
(
ufi(t) + fi(t)

)
,

ωi(t) = Lzi(t).
(6)

According to [Furtat and Fradkov, 2015; Furtat, Chug-
ina, and Fradkov, 2015; Furtat, 2011; Fradkov and Fur-
tat, 2013; Furtat et al., 2016], let us transform system
of differential equation (6) to the differential equation in
the following form

Qi(p)wi(t) = Ri(p, t)
(
ufi(t) + fi(t)

)
, (7)

where Qi(p), Ri(p, t) are linear differential operators
getting from transformation from (6) to (7) at fixed time
t, degQi(p) = 3, degRi(p, t) = 1, p = d/dt.

Rewrite operators Ri(p, t) and Qi(p) as follows [16-
20]

Ri(p, t) = R0(p) + ∆Ri(p, t),

Qi(p) = Q0(p) + ∆Qi(p).
(8)

whereR0(p),Q0(p) are linear differential operators cho-
sen such that degQ0(p) = 3, degR0(p) = 1 and
Q0(λ)/R0(λ) = Qm(λ), Qm(λ) is any Hurwitz poly-
nomial, λ is a complex variable, ∆Ri(p, t) and ∆Qi(p)

are linear differential operators describing effects of un-
certainties of (1)—(3). Substituting (8) in (7), rewrite
equation (7) as follows

Qm(p)ωi(t) = ufi(t) + φi(t),

where R0(p)φi(t) = ∆Ri(p, t)ufi(t)−∆Qi(p)ωi(t) +
Ri(p, t)fi(t), φi(t) is a function depending on uncertain-
ties of i-th generator. Then the error equation ei(t) =∑
j∈Ni

(
ωi(t) − ωj(t − τji(t))

)
can be rewritten in the

form

Qm(p)ei(t) =
∑
j∈Ni

(
ufi(t)− ufj(t− τij(t))

+φi(t)− φj(t− τij(t))
)
.

(9)

Adopting the approaches of [22], consider auxiliary
loops with desired parameters in the following form

Qm(p)ēi(t) = χufi(t), i = 1, . . . , k. (10)

Here χ > 0 is a constant chosen by a designer. Taking
into account (9) and (10), consider the mismatch func-
tion ζi(t) = ei(t)− ēi(t) obeying equation

Qm(p)ζi(t) = ψi(t),

where

ψi(t) =
∑
j∈Ni

(
ufi(t)− ufj(t− τij(t))

+φi(t)− φj(t− τij(t))
)
− χufi(t)

is the function containing uncertainties of i-th genera-
tor, uncertainties of adjacent generators for i-th genera-
tor, uncertainties of generators communications and un-
known communication time-delays.

Thus, auxiliary loop (10) allows a designer to obtain
functions ζi(t) which depend on power system uncer-
tainties and to use these functions in the control algo-
rithm.

Since relative speeds ωi(t), i = 1, . . . , k are available
for measurement introduce control laws of

ufi(t) = −χ−1Qm(p)ζ̄i(t), i = 1, . . . , k, (11)

where ζ̄i(t) is an estimate of the signal ζi(t) obtained
from observer

ξ̇i(t) = G0ξi(t) +D0

(
ζ̄i(t)− ζi(t)

)
,

ζ̄i(t) = L1ξi(t),
(12)

where ξi(t) ∈ R2 is an estimate of

θi(t) =
[
ζi(t), ζ̇i(t)

]T
, G0 =

[
0 1
0 0

]
, D0 =

−
[
d1µ
−1, d2µ

−2
]T

coefficients d1, d2 are chosen
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such that the matrix G = G0–DL1, D =
[
d1, d2

]T
is Hurwitz, L1 =

[
1, 0
]
, µ > 0 is a sufficiently small

parameter. Observer (12) is designed following [Atassi
and Khalil, 1999].

According to [Furtat, Fradkov, and Tsykunov, 014],
consider vector η̄i(t) = T−1

(
ξi(t) − θi(t)

)
, T =

diag{µ, 1} characterizing quality of observer estimation.
Taking into account (12) and differentiating η̄i(t) with
respect to t, one has

˙̄ηi(t) = µ−1Gη̄i(t) + bζ
(2)
i (t),

∆̄i(t) = µL1η̄i(t).
(13)

Here b =
[
0, 1
]T

. Rewrite equations (13) as follows

η̇i(t) = µ−1Gηi(t) + b̄ζ̇i(t),

∆̄i(t) = µL1ηi(t).
(14)

where b̄ =
[
1, 0
]T

. Equations (12) and (13) are
two different forms of the equation

(
p2 + d1µ

−1p +

d2µ
−2
)
η̄1i(t) = p2ζi(t). Taking into account (11) and

(14), transform (9) to a state space form

ẋi(t) = Amxi(t) + µbgT∆i(t),

ei(t) = L1xi(t).
(15)

where xi(t) ∈ R2 is a state vector of (15),Am ∈ R2×2 is
matrix in Frobenius form with characteristic polynomial
Qm(λ), ∆i(t) =

[
η1i(t), η̇1i(t), η̈1i(t)

]T
, g is a vector

composed of coefficients of Qm(λ).
The simplified block diagram of the control system for

i-th generator is shown in Fig. 1.

Figure 1. Block diagram of the control system for i-th generators

Theorem. Let assumptions 1-3 hold. Then there exist
coefficients χ > 0 and µ0 > 0 such that for 0 < µ <
µ0 control system (10)–(12) ensures the goal (4) and all
signals in the closed-loop system are bounded.

The proof of the Theorem is given in Appendix.
Remark. It is seen from Theorem proof that the value

ε2 in (4) may be evaluated for t = T as follows

ε2 =

√
λ−1

min(P )
(
V (0)e−βT+

(
1−e−βT

)
kµ0ψ̄

)
, (16)

where P is a the solution of the Lyapunov matrix equa-
tion

AT
mP + PAm = −Q1, Q1 = QT

1 > 0, (17)

λmin(·) (λmax(·)) is a minimum (maximum) eigenvalue
of an appropriate matrix, V (t) = V (xi(t), ηi(t)) is Lya-
punov function of the form

V (t) =

k∑
i=1

xT
i (t)Pxi(t) +

k∑
i=1

ηT
i (t)Hηi(t), (18)

H is a the solution of the matrix equation

GTH +GH = −Q2, Q2 = QT
2 > 0, (19)

β = min
{
λ−1

max(P )λmin(Q3), µ−1
0 λ−1

max(H)λmin(Q4)
}
,

Q3 = Q1 − 2µ0Pbg
TgbTP, Q4 = Q2 − 2HbbT,

ψ̄ = 2 sup
t

{∣∣∆i(t)
∣∣2 + ζ̇2

i (t)
}
.

It follows from (16) that ε2 explicitly depends on µ0. It
is seen from (16) that decrease of µ0 in n times leads to
decrease of ε2 in (4) approximately in

√
n times.

4 Three-Machine Power Systems Control Study
Consider multi-machine power system consisting of

three electrical generators Gi, i = 1, 2, 3 (Fig. 4), where
third generator G3 is a reference generator.

Figure 2. Multi-machine power system

Power system model is described by equations (1)–
(3). The set Ξ of possible values of the model param-
eters (1)–(3) is defined by the following inequalities:
6 ≤ T ′d0i ≤ 8, 3 ≤ Di ≤ 5, 4 ≤ Hi ≤ 5.5, 1 ≤ kci ≤ 3,
1.8 ≤ xdi ≤ 2.4, 0.2 ≤ x′di ≤ 0.4, 0.3 ≤ Mij ≤ 3,
i, j = 1, 2, 3.

The auxiliary loop specifies transient performance of
the closed-loop system. Choose Qm(p) = p2 + 4p + 4
and χ = 1. Then, (10) is as follows(

p2 + 4p+ 4
)
ēi(t) = −ufi(t), i = 1, 2, 3.
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Chose D = [4, 4]T , µ = 0.01 and rewrite observer (12)
in the form

ξ̇1i(t) = ξ2i(t)− 4 · 100 (ξ1i(t)− ζi(t)) ,
ξ̇2i(t) = −4 · 1002 (ξ1i(t)− ζi(t)) ,

ξ1i(0) = ξ2i(0) = 0,

Define control laws (11) as

ufi(t) = ξ̇2i(t) + 4ξ2i(t) + 4ξ1i(t), i = 1, 2, 3.

Let us consider two faults.
Fault 1 [Wang et al., 1998; Guo et al., 2000]. M12 =

M21 = 0.4853 p.u. before time t = 1 s; M12 = M21 =
2.9 at time t = 1 s; the fault is removed (M12 = M21 =
0.4853 p.u.) by opening the breaker of the fault line at
time t = 1.6 s (Fig. 4).

Fault 2. M12 = M21 = 0.4853 p.u. before time t = 25
s; M12 = M21 = 3 at time t = 25 s; the resistance of
transmission line is equal to M12 = M21 = 0.8 p.u. by
opening the breaker of the fault line at time t = 25.6 s
(Fig. 1).

Let parameters of generators Gi, i = 1, 2, 3 be chosen
as follows:
G1: D1 = 4 p.u., H1 = 5 s, T ′d01 = 1.5 s, xd1 = 1.8

p.u., x′d1 = 0.257 p.u., Pm1(t) = 0.89+0.02 sin(t) p.u.,
Vt01 = 1 p.u., kc1 = 1 p.u., δ1(0) = π/3 rad;
G2: D2 = 4.5 p.u., H2 = 4.5 s, T ′d02 = 2.1 s,

xd2 = 2.2 p.u., x′d2 = 0.32 p.u., Pm2(t) = 0.83 +
0.03 sin(0.9t) p.u., Vt02 = 0.9 p.u., kc2 = 1 p.u.,
δ2(0) = 11π/36 rad;
G3: D3 = 4.9 p.u., H3 = 5.1 s, T ′d03 = 2 s, xd3 = 2

p.u., x′d3 = 0.28 p.u., Pm3(t) = 0.85 p.u., Vt03 = 1.1
p.u., kc3 = 1 p.u., δ3(0) = 13π/36 rad;
ω0 = 314.159 rad/s, ω(0) = 0 rad/s and ∆Pei(0) = 0

p.u.
In addition consider power system with the following

unknown communication time-delays:
τ31(t) = 0.01 + 0.01 sin(t) s,
τ12(t) = τ21(t) = 0.02 + 0.02 cos(0.3t) s.
Similarly to [Wang et al., 1998; Guo et al., 2000],

introduce saturation of function Efi(t) such as −3 ≤
Efi(t) ≤ 6 p.u., i = 1, 2, 3.

Fig. 3–6 show transients for generator angles δi(t),
relative speeds ωi(t) and signals ∆Pei(t), i = 1, 2, 3.
In Fig. 3–6 index “3” corresponds to reference genera-
tor, “i-AL” corresponds to auxiliary loop algorithm for
i-th generator, “i-56” corresponds to algorithm [Wang
et al., 1998; Guo et al., 2000] without perturbation in
mechanical input power for i-th generator and “i-56p”
corresponds to algorithm [Wang et al., 1998; Guo et al.,
2000] when mechanical input power has perturbation for
i-th generator. For example, in Fig. 3 the value δ3 cor-
responds to reference generator, δ1−AL corresponds to
auxiliary loop algorithm for the first generator, δ1−56

corresponds to algorithm [Wang et al., 1998; Guo et al.,
2000] without perturbation in mechanical input power

for the first generator, δ1−56p corresponds to algorithm
[Wang et al., 1998; Guo et al., 2000] when mechanical
input power has perturbation for the first generator.

Figure 3. The transients of δ3(t), δ1−AL(t), δ1−56(t),
δ1−56p(t), rad.

Figure 4. The transients of δ3(t), δ2−AL(t), δ2−56(t),
δ2−56p(t), rad.

The simulation results show that the designed algo-
rithm ensures compensation of disturbances which de-
pend on unknown parameters of multi-machine power
system (which can be changed at faults) and perturba-
tions in an input mechanical power when full state vector
is not available to measurement. It follows from Fig. 3-6
that disturbances and influence of time delay are com-
pensated by control system with the required accuracies
ε1 = 2 rad and ε2 = 0.1 rad/s achieved after T = 5 s.

5 New England Power System Benchmark Control
Study

Let us test algorithm (10)–(12) for the New England
Power system benchmark consisting of 10 generators, 39
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Figure 7. The transients of ∆δi(t), i = 1, ..., 10, rad.

Figure 8. The transients of ωi(t), i = 1, ..., 10, rad/s.

Figure 9. The transients of ∆Vti(t), i = 1, ..., 10, rad/s.

Figure 5. The transients of ω3(t), ω1−AL(t), ω1−56(t),
ω1−56p(t), rad/s.

Figure 6. The transients of ω3(t), ω2−AL(t), ω2−56(t),
ω2−56p(t), rad/s.

buses and 19 loads [Paul, 1992; The New England Power
system benchmark].

To assess the controller robustness simulate three dif-
ferent faults. The first fault is 3-phase fault in bus num-
ber 16. It is introduced connecting a small impedance to
ground at t = 1 s and cleared after 1 s.

In the second fault the generator number 10 is suddenly
disconnected from the network at t = 15 s. This causes a
significant lack of electrical power injected into the sys-
tem.

The third fault consists in a permanent disconnection
of the transmission line between buses 17 and 18 fol-
lowed by a full load trip in bus 18 at t = 25 s.

Fig. 7–9 show transients for the angle errors ∆δi(t) =
δi(t) − δi(0), relative speeds ωi(t) and voltage errors
∆Vti(t) = Vti(t)− Vti(0), i = 1, ..., 10.

The simulation results show that the designed control
system provides compensation of unknown parameters
of the control system in normal mode and under faults.

The value ε2 in goal (4) must be reduced by choice of
Qm(p) and χ in auxiliary loop (10) and control law (11),
and µ in observer (12).

Additional investigations under saturation of input sig-
nal and switched topology show that closed-loop system
stable under the following restrictions −2 ≤ Efi(t) ≤ 2
p.u., i = 1, 2, 3, i.e. the control signal with small ampli-
tude synchronizes the multi-machine power systems.
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6 Conclusion
In the present paper we study the proposed algorithm

for control of multi-machine power systems with un-
known parameters, perturbed mechanical input power
and unknown variable communication time-delay. The
algorithm provides synchronization of the power system
and compensation of unknown parameters, disturbances
and influence of time delay on stability of the closed-
loop system in normal mode and under faults, while
multi-machine power systems without control my loss
stability.

Simulation results for three generators exhibit better
transients in the closed-loop system as compared with
[Wang, Hill, and Guo, 1998; Guo, Hill, and Wang,
2000]. Moreover, unlike [Qu et al., 1992; Wang, Hill,
and Guo, 1998; Guo, Hill, and Wang, 2000; Anderson
and Fouad, 1977; Bergan, 1996; Pogromsky, Fradkov,
and Hill, 1996; Ortega et al., 2005] the synthesis of the
control algorithm does not require measurement the state
vector of each generators and knowledge of power sys-
tem parameters. Additionally, the proposed algorithm
compensates the influence of communication time de-
lay on stability of the closed-loop system. For control of
power systems we need to measure only relative speed of
each generator and to know the set of the possible values
of power system parameters.

The proposed algorithm is studying on the New Eng-
land Power system benchmark. The simulations show
that the algorithm guarantees stability of the closed-loop
system for the 3-phase fault, a fault caused by the gener-
ator suddenly disconnected from the network, and fault
consisting in a permanent disconnection of the transmis-
sion line between buses.
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Appendix
Proof of Theorem. Consider power systems in

postfault-state. Transform equations (14) and (15) to the
following system

ẋi(t) = Amxi(t) + µ2bg
T∆i(t),

µ1η̇i(t) + µ2bζ̇i(t).
(20)

To analyze system (20) the following Lemma [Furtat,
Fradkov, and Tsykunov, 2014] is needed.

Lemma.
Let the system be described by the differential equation

ẋ = f(x, µ1, µ2, t), (21)

where x ∈ Rs1 ,µ = col(µ1, µ2) ∈ Rs2 , f(x, µ1, µ2, t)
is Lipchitz continuous function in x. Let (21) have a
bounded closed set of attraction Ω = {x|P (x) ≤ C}
for µ2 = 0, where P (x) is a piecewise-smooth, positive
definite function in Rs1 . In addition let there exist some
numbers C1 > 0 and µ̄1 such that the following hold

sup
|µ1|≤µ̄1

[〈[∂P (x)

∂x

]T
, f(x, µ1, 0, t)

〉∣∣∣∣∣P (x) = C

]
≤ −C1.

Then there exists µ0 > 0 such that the system (21) has
the same set of attraction Ω for µ2 ≤ µ0.

Let us check conditions of Lemma. Consider (20)
for µ2 = 0 Then system (20) is asymptotically stable
since Am and G are Hurwitz matrixes. Therefore, func-
tions ∆i(t), ζ̇i(t) are bounded. It follows from bound-
edness of ∆i(t) and (12) that |ξi(t)| < ∞. In view of
(11) control functions ufi(t) are bounded. Therefore,
functions ufj(t–τji(t)),∆j(t–τji(t)), |ξi(t–τji(t))| and
ζ̇i(t–τji(t)) are bounded. Therefore, according to
Lemma there exists coefficient µ0 such that for µ1 ≤ µ0

and µ2 ≤ µ0 all functions are bounded in the closed-loop
system. However, asymptotical stability of (20) does not
follow for µ2 > 0 from asymptotical stability of the sin-
gularly perturbed system (20) for µ2 = 0. Therefore,
consider (19) for µ1 = µ2 = µ0. Choose Lyapunov
function V (xi, ηi) in the form (18). Differentiating (18)
along the trajectories of (20), one has

V̇ (t) =

−
k∑
i=1

xT
i (t)Q1xi(t) +

k∑
i=1

2µ0x
T
i (t)PbgT∆i(t)

−
k∑
i=1

µ−1
0 ηT

i (t)Q2ηi(t) +

k∑
i=1

2ηT
i (t)Hbζ̇i(t).

(22)

Find upper bounds for the second and the fourth terms
of (22)

2µ0x
T
i Pbg

T∆i ≤ 2µ0

[
xT
i Pbg

TgbTPxi + |∆i|2
]
,

2ηT
i Hb ≤ 2µ−1

0 HbbTηi + 2µ0ζ̇
2
i .

Then (22) can be rewritten as

V̇ ≤
k∑
i=1

[
− xT

i Q3xi − µ−1
0 ηT

i Q4ηi

]
+ µ0kψ̄ (23)

Obviously, there exists µ0 > 0 such that Q3 > 0
and Q4 > 0. Taking into account (18), rewrite (23) as
V̇ (t) ≤ −βV (t) + kµ0ψ̄. The solution of the last in-
equality satisfies

V (t) ≤ V (0)e−βt + (1− e−βt)kµ0ψ̄. (24)

For t = T the upper bound for |ωi(t) − ωj(t)| is as
follows

|ωi(T )− ωj(T )| ≤ |xi(T )| ≤
√
λ−1

min(P )V (T ). (25)

Taking into account (25), obtain value (16) for ε2 in (4).
Theorem is proved.


