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Abstract
In the paper we proposed the approach for increasing

of quality of neurorehabilitation of post-stroke patients
based on wavelet analysis of EEG signals recoded dur-
ing motor imagery. Also we proposed brain-computer
interface based on the method. We determined all nec-
essary procedures required to find motor imagery type
(kinesthetic or visual) for each individual patient and de-
scribed subsequent rehabilitation process. We tested de-
veloped brain-computer interface on 20 participants with
post-stroke motor impairment. We believe that devel-
oped system can be used not only in laboratory experi-
mental conditions, but also in clinical ones.
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1 Introduction
Rehabilitation of patients with motor disorders is un-

doubtedly a highly important task. The successes of
neurosurgical practice and pharmacology save a large
number of patients, while social and medical rehabili-
tation services aid them in adaptation to normal life con-
ditions. No more than 15-20% of stroke survivors can
return to their previous quality of life. The rest remain
disabled people of varying severity with need of medi-
cal and social support [Thrift et al., 2017; Bèjot et al.,
2016; Carod-Artal, 2012]. The most common conse-
quences of strokes are motor disorders in the form of
hemiparesis or monoparesis, observed in 80% of patients
after a cerebrovascular accident — in half of them the
pathology persists for life. Over the past decades, the
necessary duration, intensity and choice of rehabilitation

methods after various types of stroke disorders have been
the subject of heated discussion, and the effectiveness of
rehabilitation processes still raises many questions, es-
pecially during transition from laboratory experimental
conditions to clinical ones [Choo et al., 2018; Langhorne
et al., 2018; Laver et al., 2017].

However, on average, patients who survived after a
stroke recover no more than 70% of their total motor
functional [Langhorne et al., 2011; Tse et al., 2017]. At
the same time, at least 40% of survivors after a stroke
show moderate impairment and 15-30% — serious im-
pairment, which in the future require special help and
care [Carod-Artal and Egido, 2009]. The process of
choosing approaches to rehabilitation significantly de-
pends on the characteristics of the dysfunctions that have
arisen, the patient’s psycho-emotional state and his/her
needs, as well as the specific functional goals that are set
after a stroke.

Today, there is a wide variety of diverse techniques
for working with post-stroke patients, the success of
which can vary quite a lot in different cases [Van Peppen
et al., 2004]. It is assumed that the use of classical pas-
sive techniques (massage, physiotherapy, etc.) loses in
the achieved indicators to modern rehabilitation methods
with biological feedback from the patient, involving the
activation of motor or sensory functional zones, includ-
ing mirror activation processes [Simpson et al., 2019;
Cervera et al., 2018; Ekerete et al., 2018; Bernhardt
et al., 2017]. For example, excellent results are demon-
strated in works related to the use of exoskeletal devices
[Frolov et al., 2018; Ren et al., 2017; Kawase et al.,
2017]. However, such technologies based on robotic de-
vices are expensive and require highly qualified service.

At the same time, simpler methods of motor imagery,
that can be used without the need for expensive addi-
tional equipment, also give significant results in increas-
ing the overall cognitive background and in the process
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of teaching patients with lost functional capabilities af-
ter a stroke [Guerra et al., 2017]. Moreover, there are
developed neurological recommendations, (for example,
[Dunsky and Dickstein, 2018]) on the application of the
motor activity imagination in rehabilitation activities.
The use of such techniques is very promising since it
provides, for example, the possibility of home use, con-
venience and safety factors for use in early rehabilitation.
However, there is still a lack of clarity in understanding
the process of motor imagery itself. For example, the
question remains: how is the imagination of motor activ-
ity carried out, in particular, how does the activation of
the kinesthetic, visual or any other system in the human
brain occur [Maksimenko et al., 2018a; Chholak et al.,
2019; Pavlov et al., 2019; Grubov et al., 2017].

The present paper proposes the mathematical method
for recognition brain states corresponding to motor im-
agery for neurorehabilitation of post-stroke patients and
brain-computer interface (BCI) based on it. The main
goal is to develop proper algorithm for this BCI and
to determine all necessary procedures required for test-
ing/finding motor imagery type (kinesthetic or visual)
for each individual patient and for subsequent rehabili-
tation process. This is especially important since BCI is
planned to be used primarily in clinical conditions.

2 Study Methods
2.1 Participants and Experimental Design

The study included 20 subjects with motor impairment
with the first diagnosis cerebral infarction, acute period,
confirmed by neuroimaging data. Patients included in
the group of subjects had a diagnosis of atherothrom-
botic cerebral infarction in the pool of the left or right
middle cerebral arteries. The main neurological deficit
was represented by hemiparesis on the left or right side.
The time from the onset of the disease to the study was
5 ± 2 days. Motor impairment was assessed according
to the British Muscle Strength Rating Scale with 2 ± 1
points as average result across subjects. The main crite-
rion for inclusion in the experimental group was the sta-
bility achieved by the patient in the post-stroke state. The
average age of the studied participants was 63.7 years in
the range of 59–72.

All volunteers provided informed written consent be-
fore participating in the experiment. The experimental
procedure was performed in accordance to the Helsinki’s
Declaration and approved by the local Ethics Committee
of the Saratov State Medical University named after V.I.
Razumovsky.

For each subject, the electrical activity of the brain was
registered by recording an electroencephalogram (EEG)
[Niedermeyer and da Silva, 2014]. Also we used stan-
dard monitor screen faced to the patient as an instrument
to provide any necessary audio or visual biological feed-
back [Maksimenko et al., 2019]. To record the EEG, a

monopolar registration method was used along with the
expanded arrangement of EEG electrodes according to
the “10-10” system, which allows one to evaluate the ac-
tivity of the cerebral cortex in all major zones (see Fig.
1A).

To register the EEG data, we used cup adhesive
Ag/AgCl electrodes placed on the “Ten20” paste. Be-
fore the start of experiment, we used abrasive “NuPrep”
gel to increase the conductivity of the skin and reduce its
resistance. The impedance for each EEG electrode was
measured and monitored during the experiment. Com-
mon impedance values varied within the 2–7 kΩ interval.
The ground electrode N was located above the forehead
and reference electrodes A1 and A2 were located on the
earlobes. Recorded EEG signals were filtered by a band-
pass filter with cut-off points at 1 Hz (HP) and 100 Hz
(LP) and by a 50-Hz notch filter.

For EEG recording we used electroencephalograph
“Encephalan-EEGR-19/26” (Medicom MTD company,
Taganrog, Russian Federation). “Encephalan-EEG-
19/26” device possesses the registration certificate of the
Federal Service for Supervision in Health Care No. FCP
2007/00124 of 07.11.2014 and the European Certificate
CE 538571 of the British Standards Institute (BSI).

The task during the experiment was to imagine specific
hand movements during corresponding stimulus. The
participants were instructed to imagine hand movement
as curling and uncurling the fingers towards the palm,
similar to clenching an imaginary ball [Batula et al.,
2017] (see Fig. 1B). Each stimulus consisted of two
audio signals and pause between them. The first audio
signal in each stimulus was a mark for the subject to
start motor imagery. We used two types of audio sig-
nals – short for the left hand movement (“beep1”) and
long for the right hand movement (“beep2”). The par-
ticipant should imagine motor activity until the second
audio signal (of the same type as the first one) . After
the second signal motor imagery stopped and the subject
rested until the start of the next stimulus (block of two
signals with pause between them). Stimuli for left and
right hand motor imagery were presented in random or-
der, length of time intervals for motor imagery (∆tlh,rh)
and rest (∆tr) varied in range of 8− 10 s. Both of these
features were added to prevent subject’s adaptation to
rhythmic stimuli. Experimental design is illustrated by
Fig. 1C.

2.2 Continuous Wavalet Analysis
We have analyzed the EEG signals using the contin-

uous wavelet transform (CWT) which is now widely
used in neuroscience and neurophysiology [Hramov
et al., 2015]. The instant wavelet energy spectrum
En(f, t) =

√
Wn(f, t)2 was calculated for each EEG

channel Xn(t) in the frequency range f ∈ [1, 40] Hz.
Here, Wn(f, t) is the complex-valued wavelet coeffi-
cients calculated as [Pavlov et al., 2012]
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Figure 1. Experimental setup: brain with EEG electrodes positioned
according to “10-10” system (A), illustration of required hand move-
ment (B), design of experiment (C).

Wn(f, t) =
√
f

+∞∫
−∞

Xn(t)ψ∗(f, t)dt, (1)

where n = 1, ..., N is the EEG channel number (N =
31 being the total number of channels used for the anal-
ysis) and “*” defines the complex conjugation. The
mother wavelet function ψ(f, t) is the Morlet wavelet
often used for the analysis of neurophysiological data,
defined as [Pavlov et al., 2012; Hramov et al., 2015]

ψ(f, t) =
√
fπ1/4ejω0f(t−t0)ef(t−t0)2/2, (2)

where ω0 = 2π is the central frequency of the mother
Morlet wavelet.

The total frequency range of f ∈ [1, 40] Hz can be
divided into the frequency sub-ranges: delta (1–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz), beta (13–34 Hz), and
gamma (34–40 Hz) bands [Keirn and Aunon, 1990]. Ac-
cording to our previous works [Chholak et al., 2019] we
concentrated on two particular sub-ranges: alpha (α) and
beta (β). For these bands the values of instant wavelet
energy Enα(t) and Enβ (t) for each n-th EEG channel
were calculated as

Enα,β(t) =
1

∆f

∫
f∈α,β

En(f, t)df. (3)

As the next step we averaged instant wavelet energy
Enα,β(t) over time intervals ∆t before and during motor
imagery

Ēnα,β =
1

∆tk

∆tk∫
0

Enα,β(t)dt, (4)

where k is the index of particular time interval.
According to studies there is correlation between vari-

ous types of motor activity and excitation of primary sen-
sorimotor area [Pichiorri et al., 2018; Seeber et al., 2015;
Maksimenko et al., 2018b] (EEG channels: FT8, Fc4,
Fcz, Fc3, FT7, T4, C4, Cz, C3, T3, TP8, Cp4, Cpz, Cp3,
TP7). However, studies on motor imagery [Pfurtscheller
et al., 2006] show that examined brain area can be further
constricted to three EEG channels: C4, C3, Cz. So as the
next step we averaged Ēnα,β over three EEG channels of
sensorimotor area

eα,β =
1

NSRM

NSRM∑
n=1

Ēnα,β , (5)

where n is the number of the channel from the set: C4,
C3, Cz and NSRM = 3 is overall number of examined
sensorimotor area channels.

Then as the final step eα,β was additionally averaged
over a number of time intervals related to each type of
motor imagery – left or right hand

ēα,β =
1

K

K∑
k=1

eα,β , (6)

where k is the index of particular time interval, K is
overall number of time intervals.

3 Results
According to our previous studies on motor imagery

[Chholak et al., 2019] and known rehabilitation tech-
niques [Dunsky and Dickstein, 2018] we can propose
the method for neurorehabilitation of post-stroke pa-
tients and brain-computer interface (BCI) based on it.
Method includes evaluation of event-related synchro-
nization/desynchronization (ERS/ERD) [Takeuchi et al.,
2015] in alpha and beta frequency ranges on EEG. It is
known, that kinesthetic motor imagery is tied to ERD
in alpha range and less pronounced ERD in beta range,
while visual motor imagery is accompanied by ERS in
the same frequency ranges [Chholak et al., 2019]. In
the proposed method presence of ERS/ERD in alpha and
beta frequency ranges is used to determine the type of
motor imagery and to adjust subsequent training (reha-
bilitation) process.

Algorithm of BCI is illustrated on Fig. 2 and its design
implies presence of two main parts: “testing” and “train-
ing/rehabilitation”. “Testing” block (see upper part of
Fig. 2) of BCI is used to determine type of motor im-
agery (kinesthetic or visual) for each individual patient.
This block includes demonstration of number of stim-
uli for hand motor imagery, EEG recording, CWT-based
analysis of EEG signals recorded during this tasks and
computation of characteristics to determine type of mo-
tor imagery. During “testing” 10 stimuli for each hand
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Figure 2. Algorithm of BCI for post-stroke patient rehabilitation.

are presented in random order to obtain EEG data during
motor imagery. This data is analyzed with CWT-based
methods and characteristics eI,IIα,β (see Eq. 5) are calcu-
lated for two types of time intervals: ∆t before the first
audio signal (I) and ∆t after the first audio signal (II).
In this case ∆t was chosen to be 2 s since time interval
of such length is enough to detect significant changes
in wavelet energy in alpha and beta frequency ranges.
Analysis of differences ∆eα,β = eIIα,β − eIα,β provides
information about ERS/ERD in given frequency ranges
since positive value of ∆eα,β would correspond to ERS
and negative value – to ERD. Then ∆eα,β were averaged
over K = 20 trials of motor imagery to obtain ∆ēα,β
(see Eq. 6) to assess overall dynamics across all “test-
ing” session.

Results of “testing” procedure for one of the patients
are shown in Table 1. From Table 1 one can see that
values of ∆eα,β vary from trial to trial, however, aver-
aged values (characteristics ∆ēα,β) are negative. These
results suppose presence of ERD in both alpha and beta
frequency ranges on EEG during motor imagery, which
leads to safe assumption that the patient has kinesthetic
type of motor imagery. Knowledge of motor imagery
type allows us to properly tune the criteria used in sub-
sequent “training/rehabilitation” session. For example,
if patient demonstrates kinesthetic motor imagery (as in
this case) we should use criterion 1 (∆eα < 0) and cri-
terion 2 (∆eβ < 0) since fulfilling them will correspond

to proper kinesthetic motor imagery. In case if patient
shows tendency to visual motor imagery there are two
options. The first one is to give patient proper instruc-
tions on kinesthetic motor imagery and repeat “testing”
procedure. If it doesn’t work the second option is to use
reversed criteria (∆eα > 0,∆eβ > 0 ) that are corre-
spond to visual type of motor imagery. However, effi-
ciency of neurehabilitation with the help of visual motor
imagery is questionable.

There is a pause between “testing” and “training” ses-
sions that is used for patient’s rest and for CWT analysis
of recorded EEG data. The length of the pause can vary
in range of 2-5 minutes according to the patient’s state.
This time interval is sufficient for EEG-related compu-
tations since we use parallel computing technologies for
CWT-based analysis [Grubov and Nedaivozov, 2018].

Table 1. Results of “testing” for one of the patients

∆eα ∆eβ

-12.03 -24.79 22.33 8.22

-67.99 -36.96 -118.76 -11.01

1.78 14.04 -152.19 -42.12

-36.13 4.95 54.92 -243.4

-43.6 2.41 6.07 -83.32

2.71 -8.39 -12.08 -82.47

-15.83 30.36 -11.86 -16.18

-1.4 10.18 29.8 -150.39

7.55 -13.35 0.78 -29.52

-72.89 -6.74 -36.33 -56.87

mean -13.30 -46.22

“Training” block (see lower part of Fig. 2) is used to
conduct rehabilitation procedure. During this procedure
stimuli for left and right hand motor imagery are demon-
strated in random order. We perform CWT-based analy-
sis online for each trial of motor imagery and calculate
characteristics ∆eα,β . Then we check the fulfillment
of chosen criteria and provide feedback to patient. As
one can see from Fig. 2 criterion 1 is the first one to be
checked since presence of ERD in alpha frequency range
is the determinative factor of proper kinesthetic motor
imagery. If criterion 1 is not fulfilled we assume that mo-
tor imagery wasn’t successful, so we show “Try again”
message on the screen as a feedback to patient. If crite-
rion 1 is true then we check criterion 2 – if it is fulfilled
then motor imagery was properly done and we demon-
strate “Excellent work” message to patient. If criterion 2
is not true, then motor imagery was successful to some
degree, however, it can be improved, so feedback in this
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case is “Good work”. Results for “training” procedure
for one of the patients are shown in Table 2.

Table 2. Results of “training” for one of the patients

∆eα ∆eβ Feedback

-28,28 -67,04 Excellent work

1,15 3,21 Try again

-45,03 -70,98 Excellent work

-38,62 -8,16 Excellent work

-17,16 22,68 Good work

-5,26 -14,81 Excellent work

-4,59 -189,15 Excellent work

-23,95 -129,89 Excellent work

15,59 -52,46 Try again

-8,70 32,18 Good work

4 Conclusion
In this paper we proposed the new method for recogni-

tion of motor imagery for post-stroke neurorehabilitation
based on CWT-analysis of EEG signals recorded dur-
ing motor imagery tasks. We determined all necessary
procedures required to find motor imagery type (kines-
thetic or visual) for each individual patient. Also we de-
scribed subsequent rehabilitation process with means to
provide feedback for patient. We tested developed brain-
computer interface on 20 participants with post-stroke
motor impairment.

The results of these studies appear promising for fur-
ther fundamental research and practical application. De-
veloped system is customizable to individual features of
each post-stroke patient, which can be used to adopt this
BCI for other types of neurohabilitation or healthy sub-
ject’s training. We also believe that developed system
is all-sufficient to be used not only in laboratory exper-
imental conditions by scientific researchers, but also in
clinical conditions by medical staff.
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