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Abstract
We explore in this article complex networks of non-

identical oscillators. More specifically, we focus on
the impact of Similar or Dissimilar neighborhoods over
synchronization measures. Maybe contrary to the in-
tuitive idea, our numerical simulations show that the
more homogeneous is a network, the higher tend to be
the coupling strength required to phase-lock. In addi-
tion, if the coupled oscillatory system is composed of
heterogeneous variants, then less coupling strength is
required for phase-lock and larger values of order pa-
rameter are observed, which means that the fixed phase
synchronization is closer to full synchronization.
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1 Introduction
Many social and biological studies about multi-agents

systems reveal that their members tend to select simi-
lar peers to interact in a myriad of processes. However,
this is not a general rule. Ref. [Wedekind et al. 1995]
shows that some genetically determined odor compo-
nents like MHC (major histocompatibility complex)
can be important in mate choice. Women tend to score
male odor as more pleasant when they differed from
their own MHC, maybe as a mechanism to enhance
DNA diversity. Ref. [Hamm 2000] presented strong
evidences that adolescents did not choose friends with
identical orientations: some aspect are indeed impor-
tant while others are almost uncorrelated. Thus, Nature
seems to favor Similar, Neutral or Dissimilar (neigh-
borhood) patterns to achieve distinct objectives.
We focus on an analogy of these concepts within the

non-identical phase-oscillator Kuramoto model with

local mean field coupling, which is one of the main
paradigms to describe collective behavior and synchro-
nization [Pikovsky et al. 2003]. This model is interest-
ing because it approximates the dynamics of any non-
linear oscillators near its limit cycle, under weak mu-
tual interaction. Besides, there are a number of appli-
cations from different areas based on it [Strogatz 2001;
Arenas et al. 2008], which highlight the role that syn-
chronization plays. Among the works of this research
field, we cite [Sun et al. 2009], based on Master Sta-
bility Function for nearly identical oscillators. [Brede
2008] proposes an algorithm to obtain optimized net-
works related to local and global synchronization. Our
main contribution is to analyze how the heterogeneity
among the connected oscillators in the networks mod-
ifies some key synchronization features. If there are
only two connected oscillators, it is known that the re-
lation between dissonance and coupling strength deter-
mines synchronization.
In this paper, we introduce the novel total dissonance

measure for vertex weighted graphs. It comprises the
dissonance among every two neighbor nodes in the
graph. Thus, we construct Similar and Dissimilar
networks with optimization tools and show that these
measure yields deeply influences the critical coupling
strength for phase-locking.

2 Model
We consider a system of N phase oscillator coupled

through a simple and connected graph, whose dynamic
of oscillator i = 1, . . . , N is given by the following
ordinary equation

θ̇i = ωi +
ε

di

N∑
j=1

Aij sin(θj − θi) , (1)



where ω = (ω1, . . . , ωN ) ∈ RN are the natural fre-
quencies of each oscillator. The coupling strength
ε ≥ 0 is a system parameter that adjusts the intensity
of attraction between neighbor oscillators. The sym-
metrical coupling graph is expressed by its adjacency
N × N matrix A, so that Aii = 0; Aij = 1, if oscil-
lators i, j are connected; and Aij = 0, otherwise. The
vertex degree is denoted by di =

∑N
j Aij .

Our new measure, the total dissonance, is defined as

νTotal =
1

N

√√√√ N∑
i,j=1

Aij(ωi − ωj)2. (2)

Of course, νTotal = 0 if and only all oscillators are iden-
tical oscillators. Otherwise, if we obtain permutations
of ω such the associated νTotal is closer to its minimum
or maximum, then we have the Similar or the Dissim-
ilar configuration, respectively. The overall maximum
and minimum values of νTotal

We consider Erdös-Rényi (ER) networks and mean
degree 2. Different sizes of small to medium net-
works are considered. For each size of network, a
single choice of natural frequencies with zero mean
is randomly draw from an uniform distribution over
[−π, π]. Negative values of natural frequencies mainly
arise due to change of variables to obtain zero mean
ω, which is convenient from the mathematical point
of view [Pikovsky et al. 2003]. Of course, νTotal is
smooth related to ω. However, we are interest only
in permutations of ω, which correspond to a discon-
tinuous problem requiring combinatorial optimization
techniques. So, an simulated annealing algorithm is
applied to obtain Similar (minimization of νTotal) or Dis-
similar (maximization of νTotal) networks. Neutral pat-
terns correspond to non-optimized patterns, with νTotal

near the middle value between extremes. Fig. 1 illus-
trates the result of these optimizations.
The norm of the global mean field, the order parame-

ter, will be denoted by

R(θ) =

∣∣∣∣∣1/N
N∑
i=1

eiθi

∣∣∣∣∣ .
This measure R may range from 0 to 1, indicating that
the ensemble gradually changes from null global mean
field, where the sum of all phasors eiθi cancel out, until
full synchronization, where θ1 = . . . = θN , respec-
tively.
Under this context, if ε is large enough, analytical re-

sults like in [Jadbabaie et al. 2004] guarantee conver-
gence to phase-lock, that is all oscillators evolve to-
gether as a rigid body and R(θ(t)) converges. How-
ever, we are interested here in much smaller values for
the coupling strength ε than the lower bound given by
that work. For a given choice of parameters and initial
conditions, we call εPL the smallest value of coupling

strength ε such that R converges. In addition, we de-
fine RPL as the correspondent value of R. Both εPL and
RPL are numerically evaluated in this work. A discus-
sion about analytical bounds for εPL may be found at
[Chopra et al. 2009]. Note also that R and εPL does
not come into play in the optimization process. We are
interested in the correlation between Similar, Neutral
and Dissimilar configurations, obtained through an op-
timization algorithm, and the synchronization quanti-
fiers R and εPL which makes use of the coupling graphs
but requires numerical integration.

3 Numerical Simulation and Conclusion
We present here results for 100 different ER graphs

and N = 10, 50, 100. Three version of each combina-
tion of graph A and natural frequencies ω are studied:
without optimization (Neutral), with small νTotal (Sim-
ilar) and with high νTotal (Dissimilar). Tab. 1 shows a
summary of the measures νTotal obtained.

Network
Mean and Standard Deviation of νTotal

Similar Neutral Dissimilar

ER 10 1.190 0.085 1.960 0.178 2.500 0.048

ER 50 0.327 0.016 0.768 0.042 1.120 0.016

ER 100 0.245 0.008 0.545 0.019 0.777 0.008

Table 1. Total Dissonance νTotal for each size of network consid-
ered.

So far, observe that both mean value and standard de-
viation of νTotal become smaller as N increases.
The numerical integration is performed with random

initial condition θ0 ∈ RN , with uniform distribution
over the unit circle. We emphasize that there is no cor-
relation between θ0 and ω. A different initial condition
is considered for each network. Successive integrations
were performed with increasing values of ε until phase-
lock, that is ε = εPL. An Adams-Bashforth-Moulton
Method for numerical integration with fixed step size
h = 0.01 was applied. A large enough transient time
was suppressed from the data of at least 2.103 units of
time.
Tab. 2 and 3 present the main result of this work. Note

that if νTotal increases, then both the mean and standard
deviation of εPL decreases, which is counter intuitive,
since εPL = 0 implies identical oscillators, so any pos-
itive value of ε yields phase-lock. Furthermore, the
mean values of εPL increase with the increment of N
for all cases. However, this increment becomes smaller
for larger values of N . For all configuration patterns,
the critical coupling strength εPL did not grow with the
same order as the population size N . If νTotal increases,
then the mean value of RPL also increases, but the stan-
dard deviation of RPL decreases.



Figure 1. Different configurations of ER networks with N = 50: (Left) Similar, νTotal = 0.32; (Middle) Random, νTotal = 0.78; and
(Right) Dissimilar νTotal = 1.11.

Network
Mean Standard Deviation of εPL

Similar Neutral Dissimilar

ER 10 5.75 0.95 4.76 0.66 3.88 0.26

ER 50 10.30 1.24 6.42 0.87 4.19 0.26

ER 100 11.70 1.24 6.76 0.97 4.50 0.30

Table 2. Critical coupling for phase-lock εPL and its order parame-
terRPL.

Network
Mean Standard Deviation of RPL

Similar Neutral Dissimilar

ER 10 0.59 0.07 0.79 0.04 0.86 0.02

ER 50 0.51 0.09 0.79 0.05 0.88 0.02

ER 100 0.54 0.08 0.79 0.05 0.89 0.02

Table 3. Critical coupling for phase-lock εPL and its order parame-
terRPL.

So, our simulations suggest that Dissimilar networks
require lesser coupling strengths to achieve fixed phase
synchronization. Moreover, this synchronization is
closer to full synchronization in comparison with net-
works with smaller νTotal. This result may be important
for instance to technological applications with fixed
coupling topology and inner dynamics, since we shows
how it is possible to enhance synchronization just by
exchanging the oscillators positions in the system. Ex-
periments with other graph topologies exploring these
and other synchronization phenomena related to total
dissonance are already been prepared for further publi-
cations.
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