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Abstract:  

The initial condition problem for fractional linear 

system initialisation is restudied in this paper. A 

general formulation similar to the integer order is 

presented. The Riemann-Liouville and Caputo initial 

conditions are interpreted in terms of the general 

scheme. 
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1  Introduction 

 The initial value problem is a theme that remains 

quite up-to-date, even in the classic integer order 

case (Lunberg et al, 2007). In fact, the computation 

of the output of a linear system under a given set of 

initial conditions is an important task in daily 

applications. Traditionally this task has been 

accomplished by means of the unilateral Laplace 

transform (ULT) and the jump formula that is a 

result of the distribution (generalized function) 

theory (Ferreira,1997;Hoskins, 1999). The problems 

found in concrete applications have been addressed 

and are motivated by the ULT treatment of the origin 

as presented in the main text books and in the 

fractional case by the use of derivative definitions 

that impose specific initial conditions that may not be 

the most suitable for the problem.   

 In current literature we find two situations: 

• People who consider the Riemann-Liouville 

(RL) derivative and the associated initial 

conditions (e.g. Samko et al, 1987; Miller & 

Ross, 1993; Podlubny, 1999); 

• People that use the Caputo (C) derivative that 

uses integer order derivatives (e.g. Davidson & 

Essex, 1998; Mainardi and Pagnini, 2003; Jafari 

and Daftardar-Gejji, 2006). 

If x(t) is a causal signal and denoting the Laplace 

transform by LT we have for the RL case: 

LT[Dαx(t)] = LT[ ] Dm[ D-(m-α) x(t)]  = 

                   sα X(s) - ∑
i=0

m-1
  sm-i-1 Di-m+αx(0)            (1) 

where m is the least integer greater than or equal to 

α. In the Caputo case, we have 

LT[Dαx(t)] = LT[ ]D-(m-α) [Dm x(t)]  = 

                  sα X(s) - ∑
i=0

m-1
  si-m+α Dm-i-1x(0)    (2) 

In the last years the second approach has been 

favoured relatively to the first, because it is believed 

that the RL case leads to initial conditions without 

physical meaning. This was contradicted by 

Heymans and Podlubny (2005) that studied several 

cases and gave physical meaning to the RL initial 

conditions, by introducing the concept of 

“inseparable twin”.  On the other hand, Agrawal 

(2006) shows that both types of initial conditions can 



appear. Similar position is assumed by Gorenflo and 

Mainardi (1997) and Bonilla et al (2007).  

 In Ortigueira (2003) and Ortigueira and Coito 

(2007) the problem was faced with all the generality. 

It is this approach we describe in this paper.  It is 

based on the following assumptions: 

• All the involved signals are defined over the 

whole set of real numbers. 

• If the systems are observed for t>t0, t0∈R, our 

observation window is the Heaviside unit step 

function, u(t-t0). 

• The initial conditions depend on the past input 

and output of the system, not on the actual or 

future. 

We will put the Riemann-Liouville and Caputo 

derivatives in terms of this general frame work and 

discover which are the equations suitable for RL and 

C derivatives.  

The paper outline proceeds as follows. The initial 

value problem is treated in three steps by:  

stating the initial value problem (section 2 ); 

presenting the proposed solution (section 2 ); 

• inserting the RL and C initial conditions in the 

above general formulation (section 3). 

At last, we present some conclusions. 

2 The Initialization Problem 

 Let us assume that we have a fractional linear 

system described by a fractional differential equation 

like: 

      ∑
n=0

N
 anDγn y(t)  = ∑

m=0

M
 bmDγm x(t)  γn < γn+1    (3) 

where D means derivative and γn n=0, 1, 2, … are 

derivative orders that we will assume to be positive 

real numbers. Usually aN is chosen to be 1. This 

equation is valid for every t∈R.  

As it is well known, the solution of the above 

equation has two terms: the forced (or evoked) and 

free (or spontaneous). This second term depends only 

on the state of the system at the reference. This state 

constitutes or is related to the initial conditions. 

These are the values at t=0 of variables in the system 

and associated with stored energy. It is the structure 

of the system that imposes the initial conditions, not 

the eventual way of computing the derivatives.

 The instant where the initial conditions are taken is 

very important, but it has not received much 

attention. In most papers, people don’t care and use 

t=0. This happens in most mathematical books and 

papers (see the references in Lunberg et al). Others 

use t=0+, motivated by the requirement of continuity 

of the functions for t≥0 and the initial value theorem. 

However and as pointed out by Lunberg et al (2007), 

we must retain the initial conditions at t=0-, because 

the initial conditions represent the past of the system 

and do not have any relation with the future inputs. 

But this obliges us to change the ULT definition by 

starting the integration at t=0-, instead of t=0, as it is 

customary.  However the ULT has several 

disadvantages: 

• It forces us to use only causal signals. 

• Some of its properties lose symmetry, e.g. the 

translation and the derivation/integration   

properties. 

• It does not treat easily the case of impulses 

located at t=0 (Hoskins, 1999). 

• In the fractional case, it imposes on us the same 

set of initial conditions as the Riemann-

Liouville case that can be a constraint.  

To avoid these problems we apply the Bilateral 

Laplace Transform (BLT). 

3 The General Approach 

To fully understand our reasoning framework we 

must  return back to the equation (3) and assuming 

we want to compute the system output under a given 

set of initial conditions. These initial conditions 

resulted from previous input signal has stopped at 

some instant, t=tp, in the past. Thus the initial 

condition problem amounts to find the set of initial 

conditions for which the system described by model 

(3) with input v(t) presents the output w(t) (figure 1). 

This leads us to conclude that our initial conditions 

must verify: 

        y(γn)(t0) = y(γn)(tp) = y(γn) (tp-), n=0, …, N  

and  

         x(γn)(t0) =x(γn)(tp) = x(γn)(tp-), n=0, …, M 

 



 
Figure 1 – The initial condition problem 

These values were retained by the system and are 

going to influence the output when we excite the 

system with a new input at a given instant t0 > tp.  As 

we said before, this forces us to conclude that the 

initial conditions are not influenced by this new 

input. Simultaneously it shows the impropriety of 

using the ULT, because the value of the integral does 

not depend on what happens at an isolated point, if 

the function assumes a finite value.  

To deal with this case, we will consider t=0 as initial 

instant and functions with the general format 

                     y(t) =  ∑
n=0

N
  fn(t) t

γnu(t)  (4) 

where 0< γn < γn+1 and the functions fn(t) (n=0, …, N) 

and their derivatives of orders less than or equal to γN 

are assumed to be regular at t=0.  

We will use a step by step differentiation to make the 

initial values appear and understand their meaning. 

Let y(t) be a signal given by (4) and consider the 

sequence βn by: 

                       βn = γn - ∑
k=0

n-1
 βk ,  β0=γ0 (5) 

A step by step procedure is used to derive the main 

result.  

a) According to our assumptions β0 is the least real 

for which lim
t→0

 
y(t)
 tβ0

  is finite and nonzero. It exists 

because the fn(t) are regular at t=0. Its value is 

y(β0)(0)
Γ(β0 +1). All the derivatives Dαy(t) (α<β0) are 

continuous at t=0 and assume a zero value. The β0 

order derivative assumes the value y(β0)(0) and we 

can construct the function 

        ϕ(β0)
 (t) = [y(t).u(t)](β0) - y(β0)(0)u(t)  (6) 

that is continuous and assumes a zero value at t=0.  

b) Now, β1 is the least real for which lim
t→0

 
ϕ(β0)(t)

tβ1
  is 

finite and nonzero. Let it be 
y(β0+β1)(0)
Γ(β1 +1)  .  Thus the 

β1 order derivative of ϕ(β0)
 (t) is given by: 

 ϕ(β0+β1)(t) =[y(t).u(t)](β0+β1)  -          

          - y(β0)(0) δ(β1-1)
 (t) - y(β0+β1)(0) u(t)   (7) 

which is again continuous at t=0.  

c) Considering β2 to be the least real for which 

lim
t→0

 
ϕ(β0+β1)(t)

tβ2
  is finite and nonzero. Let it be 

y(β0+β1+β2)(0)
Γ(β2+1)  . Thus 

ϕ(β0+β1+β2)(t) =[y(t).u(t)](β0+β1+β2)  -             

y(β0)(0) δ(β1+β2-1)
 (t) -y(β0+β1)(0) δ(β2-1)

 (t) - 

                          - y(β0+β1+β2)(0)u(t)                       (8) 

is again continuous at t=0.  

d) Repeating this procedure yields a function: 

ϕ(γN)(t) =[y(t).u(t)](γN) - ∑
0

N-1
 y(γm)(0)δ(γN-γm-1)

 (t)  (9) 

that is not continuous at t=0, but which can be made 

continuous if we subtract it y(γN)(0)u(t) .  Using this 

procedure in both members of equation (3) leads to 

the initial condition complete equation 

∑
i=0

N
  ai .[y(t).u(t)](γi)

  = ∑
i=0

M
  bi .[x(t).u(t)](γi)

   + 

+ ∑
i=1

N
  ai .∑

0

i-1
 y(γm)(0)δ(γi-γm-1)

 (t) - 

                    - ∑
i=1

M
  bi ∑

0

i-1
 x(γm)(0)δ(γi-γm-1)

 (t)  (10) 

Equation (10) states the general formulation of the 

initial value problem solution.  

4 Special Cases 

4.1 Riemann-Liouville 

 The left Riemann-Liouville fractional derivative as 

it is commonly presented can be represented by the 

following double convolution (Ortigueira et al, 2005) 



f(α)
RL (t) = δ(n)

+ (t) * 
⎩
⎨
⎧

⎭
⎬
⎫

f(t) * δ(−ν)
+ (t)  

where α = n – ٧, δ(n)
+ (t) is the nth derivative of the 

Dirac impulse, and 

δ
(−ν)
+ (t) = 

tν−1

Γ(ν) u(t), 0 < ν < 1 

In terms of the operator D, we can write: 

f(α)
RL (t) = D{D[D … D-٧]}f(t) 

So, we have an integration (negative order 

derivative) followed by a sequence of N order one 

derivatives. This leads to β0 = γ = -٧ and βi = 1, and 

γi=γ+i, for I = 1, …, N. Then,  

ϕ(N+γ)(t) =[y(t).u(t)](N+γ) – ∑
0

N-1
 y(m+γ)(0)δ(N-1-m)(t) (11) 

and 

LT[ϕ(N+γ)(t) ]=sN+γY(s)- ∑
0

N-1
 y(m+γ)(+) sN-m-1 (12) 

With α=N+γ, this relation can be rewritten as: 

     LT[ϕ(α)(t) ] = sαY(s) - ∑
0

N-1
 y(α-1-i)(0) si  (13) 

that is the current Riemann-Liouville solution. With 

the above set orders, we obtain for the initial 

condition complete equation 

  ∑
n=0

N
 anDγ+n

 y(t)  = ∑
m=0

M
 bmDγ+m

 x(t)  + 

+ ∑
i=1

N
  ai .∑

0

i-1
 y(γ+m)

 (0)δ
(i-m-1)
 (t) - 

                - ∑
i=1

M
  bi ∑

0

i-1
 x(γ+m)

 (0)δ
(i-m-1)
 (t)  (14) 

From this result, we immediately conclude that the 

RL initial conditions are suitable for solving 

equations of the following format: 

              ∑
n=0

N
 anDγ+n

 y(t)  = ∑
m=0

M
 bmDγ+m

 x(t)   (15) 

that is a very restrict class. 

 

4.2 Caputo 

Similarly to the RL case, the  left Caputo fractional 

derivative as it is commonly presented can be 

represented by the following double convolution 

(Ortigueira et al, 2005 

f(α)
C (t) = ⎩⎨

⎧
⎭
⎬⎫f(t) * δ

(N)
+ (t)  * δ(−ν)

+ (t) 

In terms of the operator D, we can write: 

f(α)
C (t) = D-٧{D[D … D]}f(t) 

corresponding to a sequence of N order one 

derivatives and an integration. The Caputo case is not 

in the framework considered in section 3. In fact, we 

considered there that the γn (n=0, …,, N) is an 

increasing sequence. In Caputo differentiation, we 

have γn = n for (n=0, …, N-1) and γN = N-ε with 

0<ε<1. However, the integration does not introduce 

non zero initial conditions, we have: 

  ϕ(γN)(t) =[y(t).u(t)](γN) -∑
0

N
 y(i)(0)δ(N-i-1-ε)

 (t)  (16) 

or, putting α=N-ε; 

     ϕ(α)(t) =[y(t).u(t)](α) -∑
0

N
 y(i)(0)δ(α-i-1)

 (t)  (17) 

that is the usual way of presenting the C derivative. 

With this result and following a procedure similar to 

the one used in the Caputo case, we can write: 

  DN-εy(t) + ∑
n=0

N-1
 anDny(t)  = b0DM-εx(t) + ∑

m=0

M-1
 bm Dnx(t) + 

+ ∑
i=1

N
  ai .∑

0

i-1
 y(j)(0)δ(N-j-1-ε)

 (t) - 

                    - ∑
i=1

M
  bi ∑

0

i-1
 x(j)(0)δ(N-j-1-ε)

 (t)  (18) 

So and as in the RL case, the C derivative is suitable 

for dealing with equations with the general format : 

  DN-εy(t) + ∑
n=0

N-1
 anDny(t)  = b0DM-εx(t) + ∑

m=0

M-1
 bm Dnx(t)  

 (19) 

that represents again a very restrict class of systems.  

 

4.3 The rational order case 

 If all the orders in (3) are rational we can always 

put them as multiple of a given rational γ: 

                             γi=iγ, for i=0,1, …, N. 

We have: β0=0, βi =γ, for i=1, …, N-1. Then, (9) will 

be transformed into 

ϕ(nγ)(t) =[y(t).u(t)](nγ) - ∑
0

n-1
 y(mγ)(0)δ(n-i)γ-1

 (t)  (20) 

that inserted in (3), gives 



∑
i=0

N
  ai .[y(t).u(t)](iγ) = ∑

i=0

M
  bi .[x(t).u(t)](iγ) + 

+ ∑
i=1

N
  ai . ∑

j=0

i-1
 y(jγ)(0).δ ((i-j)γ-1)(t)  - 

                    - ∑
i=1

M
  bi ∑

j=0

i-1
 x(jγ)(0).δ ((i-j)γ-1) (t) (21) 

This is also valid even if γ is not rational. This means 

that (20) represents a very large class of systems. 

This equation can be solved using the BLT.  

5 Conclusions 

We presented a general approach to the solution of 

the initial condition problem that appears quite 

naturally and is independent from the way the 

derivatives are computed. We looked into the 

Riemann-Liouville and Caputo derivatives from this 

general point of view and obtained the classes of the 

equations suitable to be solved be means of 

Riemann-Liouville and Caputo derivatives. We 

conclude that they constitute very restrict sets. 
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