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1    Introduction 
In the past decades, along with the vibro-impact 

machines that use disbalanced exciters, the 
excentric vibro-impact machines (EIVM) with a 
crank vibration stimulator (CVS) are widely used in 
construction [Bobylev, 1980]. The EIVM utilize the 
principle of an “inversed vibrator", the working 
organ of which is situated on an excentric shaft.  

The EIVM are widely used for soil densification 
and pile driving. The efficiency of these processes 
obviously depends on the amount of energy 
transferred from the vibrator to the soil or pile. Also 
of significant importance for the efficiency is the 
dynamic signature of the load produced by the 
machine. It is known that to obtain a dense and 
stable soil structure the pressure on the ground 
produced by the working organ of the machine 
should increase gradually. The lower boundary of 
this pressure is determined by the soil material 
properties, whereas the upper boundary is mainly 
dictated by the soil stability limit and/or by the 
technological conditions. Correspondingly, the 
working regime of the vibro-impact machines 
should provide the quasi-plastic soil behavior. It is 
also of importance that the frequency of the impacts 
does not allow the development of the elastic post-
action between the impacts. Such multi-impulse 
loading may be realized with the help of EIVM 
with CVS, whose construction allows to easily tune 
the working regime by means of the kinematic 
connections.  

In this paper, a mathematical model of multi-
impact EIVM with CVS is presented that, accounts 
for soil flexibility. The model first analyzed in the 
phase space. Then, based on the features of the 
phase trajectories, the method of point mapping is 
applied in order to identify the domains of 
existence and stability of periodic regimes in the 
parameter space. The relationships between the 
model parameters are found that allow to tune the 
EIVM to its main working regime. The general 
methodology of investigation of the periodic 
regimes of the vibro-impact machine is illustrated 
by numerical examples of practical use.  
 

2    Equations of motion 
Consider a vibro-imact machine schematized in 

Figure 1. It consists of a machine body 1 that 
contains an excentric shaft 2 to the ends of which 
the fly-wheels are attached. On the shaft, the 
excentric mechanisms 3 are mounted. Each of these 
mechanisms consists of two excentrics, one inside 
the other. By moving the excentrics relative to each 
other, the excentricity values  and the phase shifts ir

iϕ  can be varied. On the free ends of the cranks, 
the crawlers-impactors (CI) 4 are mounted. The 
excentric mechanisms together with the cranks and 
CI convert the uniform rotation (with the frequency 
ω ) of the fly wheels and the shaft to the oscillatory 
motion of the machine body about the pillars 5. The 
CIs are situated one inside the other and each 
impacts its own anvil.  

Soil is represented as an elastically supported 
mass 1M . The spring coefficient of the support is 

. The energy loss in the machine and in the soil is 
assumed to be of the viscous type and is 
characterized by damping coefficients  and  
respectively.  
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Fig 1. 
 
The oscillations of the machine body take place 

relative to one of the excentric mechanisms as these 
mechanisms vibrate with a different phase and, 
generally speaking, have different lengths. The 
impacts on the anvil take place either when the 
active CUI changes or when the machine body 
detaches from it. 



Assuming that the masses of the crank and CIs 
are negligible, the equations of independent motion 
of the machine and of the oscillator that represents 
the soil (the motion when the soil and the machine 
are not in contact) can be written as 
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where ( )y t  is the directed upward coordinate of 
the centre of rotation of the machine body 
referenced to the equilibrium of mass 1M , ( )sy t  is 
the directed upward coordinate of mass 1M  
referenced to the same equilibrium, M  is the mass 
of the machine body, g  is the gravity acceleration.  

The independent motion takes place when 
, where  are the coordinates of the CIs. 

When one of the CIs impacts the soil, i.e. when 
 an instantaneous interaction is assumed to 

take place such that  
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where  and  are the velocities of the i-th 

impactor and of the soil just before the impact, 
piy−

cy−

piy+  

and  are the respective velocities right after the 
impact,  is the coefficient of velocity 
restoration, 

cy+

0 R≤ ≤1
0 1M Mμ = . 

If the impact is perfectly inelastic, i.e. if 0R = , 
the machine body and the soil move together after 
the impact. This regime is described by the 
following equation of motion: 
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 The coordinates  of the CIs are given by the 

following expression: 
piy
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where is  is the distance between the point of 
fixation (a hinge) of the i-th crank to the head of the 
i-th CI,  and  are the excentricity and the length 
of the i-th CI. 

ir il

For further analysis, it is customary to 
reformulate the above problem statement in a 
dimensionless form. To this end, we introduce the 
dimensionless time tτ ω= , the dimensionless 
coordinate of the machine body 2( ) /x y s l l= − −  
and the dimensional coordinate of the soil 

1 /cx y l= . Additionally, the following 
dimensionless parameters are introduced: 
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Using the above-introduced notations, introducing 

( ) cos( )i i if iτ ε μγ τ ϕ= − −  and assuming i ir l<< , 
the following dimensionless problem statement is 
obtained 
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where the overdot denotes derivative with respect 
to the dimensionless time. A periodic in τ  function 

( )F τ  in equation (7) is given as  
 

2
1( ) ( 1) ( ) 2 ( )iF f h fτ ε λ τ τ= + − +   (3) 

 
and { }1 2( ) max ( ), ( ),..., ( )Nf f f fτ τ τ τ= .  

  
 
3    Dynamics of the system assuming the soil to 

be immovable 
Assuming 1 10,x M= = ∞ equations (6)-(8) are 

reduced to [Feigin, 1994] 
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The phase space of system (4) in coordinates , ,x x τ  
is limited in x  such that ( ),x f xτ≥ < +∞ , see 
Fig.2. All phase trajectories are located either on 
the surface ( )x f τ=  or above it. Generally 
speaking, this surface consists of  (the number of 
CIs) intersecting surfaces. 
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Fig. 2. 
 

In the following, main attention will be paid to 
the periodic regimes in which the impactors nock 
on the anvils one after the other within the period Г. 
It is obvious, that such regimes are possible only 
under the condition of intersection in pairs of the 
surfaces ( )kf τ  and 1( )kf τ+ . To satisfy this 
condition the following constraint should hold 
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If for any k  the above inequality is not fulfilled, 
one of the CIs would be inactive, which is 
undesirable.  

Looking at the phase space, it becomes clear that 
the system dynamics may be carried out by 
studying the properties of a point mapping T of the 
surface ( )x f τ=  onto itself. Let us consider the 
basic point mappings  that map points of the 
surface 

1k+Τ

1( )kx f τ+=  onto points of the surface 

2 ( )kx f τ+= . These mappings in the case 0h =  can 
be written as  
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Parameters in (11) have to satisfy constraint (10), as 
well as to ensure the existence of the mapping, i.e. 
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The position of a fixed point  that 

corresponds to the periodic regime under 
consideration is determined by the system of 
2(N+1) equations 

* * *( , )τΜ Χ

(9) supplemented by the 
following conditions that ensure that this point is 
fixed [Feigin, 1994]: 
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Using (9) and (13), one can obtain 
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where the components of the N-dimensional vector-
function are independent of 1( ,..., )Nb b b *

1, k+Χ Χ , 
but do depend upon *

1, kτ τ + and the system 
parameters: 
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The time intervals spent on the motion along an 

individual part of the relevant phase trajectory can 
be found from the following system of nonlinear 
equations: 
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The local stability of the main periodic regime is 
determined by the roots of the characteristic 
equation 2

0 1 2( ) 0Z a Z a Z aχ ≡ + + = , whose coeffi-
cients , 0,1,la l 2=  can be found by linearizing the 
equations of the around the fixed point [Feigin 
1994]. After some evaluations, one can derive the 
following equation 
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in which A(Z), B(Z), C(Z), D(Z) are square matrixes 
whose non-zero elements are given as 
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As an example, let us assume that . The 

coordinates of the fixed points can be found as 
follows: assuming a value for 

2N =

ξ  (the time interval 
needed to travel between the two surfaces 

( )ix f τ= , i =1,2 ) and using equations (17)-(19), 
one can find the corresponding value of μ  and the 
phase. The latter satisfies the following equation: 
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Then , using μ  and ( )*tan τ  and employing (14), 

the impact velocities  can be calculated.  *
iΧ

The elements of the matrices A(Z), B(Z) in the 
case of consideration can be found as 
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Using the above expressions, the domains of 
existence and stability of the main periodic regime 
can be found in the parameter space. It has been 
done numerically and the calculations showed, that 
with increasing ,ε ϕ  the stability domains widen in 
μ , whereas with increasing R move towards large 
values of  that correspond to lower frequencies. It 
was also shown, that the values  depend only 
marginally on the frequency parameter p, whereas 
the phase does depend on it strongly. These results 
may be used for the preliminary mechanism tuning.  
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It is possible to show, that for  we obtain 
the point mapping of a circle into itself. To 
elaborate on this,  let us examine point mapping 

0R =

 
 ( , , ), 0 1,T fτ τ τ α β τ= + < <  (23) 
 
in which a periodic nonlinear function with the 
period 1  
 
 0 ( , , ) ( , ), ( , ) 1f K Kτ α β α β α β< < >  (24) 
 
satisfies the conditions specified below. 

A. The derivative ( , , )fτ τ α β  exists everywhere 
(except maybe 1aτ = < ), and also one-sided 
derivatives existence is assumed, as in the points 

0 1τ = ∨ . 
B. 
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C.  
 (0, , ) 2fτ α β > −  (26) 
 

As the function ( , , )f τ α β  is non-monotonous, 
the mapping (23) over 1 ( , , )f 2τ α β< <  may have 
one-rotating 1τ τ= +  fixed points  and 

 , the first of which under the conditions B 
and C is always stable, whereas the second is 
always unstable. 

* aτ <
** aτ >

Further, if it is not explicitly specified otherwise, 
we shall consider the case 1 (0, , )f 2α β< < . Let us 
note, that mapping (23) is monotonous when 

(0, , ) 1fτ α β > −  (condition B) and, because 
( , , ) 0, (0 )f aττ τ α β τ> < < , the derivative 

( , , )fτ τ α β  achieves its minimum value at the point 
0τ = . The equation (0, , ) 1fτ α β = −  defines the 

boundary mΓ  of τΤ  transformation monotonous 



character in the parameters plane  ,α β . Let us 
designate as  the parameters region mG ,α β  where 

τΤ  is monotonous. 
The coordinates of the ordinary fixed 

points *τ , **τ of point mapping (23) are determined 
from the condition ( , , ) 1f τ α β = , and the 
boundaries of its existence are defined by the 
conditions: 

 
min ( , , ) 1
max ( , , ) 1

(0,1)

f
f
τ α β
τ α β

τ

=
=

∈
 (27) 

 
It is also obvious that the equations 
( , , ) 1f a α β = , (0, , ) 1f α β =  define the 

boundaries of the appearance and disappearance of 
the above fixed points. Let us designate as G the 
region of existence of the fixed points of mapping 
(23) that satisfy equation (27). 

Using the above-specified properties of function 
( , , )f τ α β  and mapping τΤ , the following can be 

shown: 
1. When **(0)τ τ<  (0) (0, , ) 1fτ α β= − , in spite 
of a non-monotonous character of the function τΤ , 
all the points of the segment, with the exception of 

**τ , are transformed into the stable point *τ . 
2. When **(0)τ τ>  the countable number of single 
segment points are transformed into non-stable 
fixed point. 
3. The equation **(0)τ τ=  in the parameter plane 
defines the bifurcation curve 
    
  (28) ** (0, , ) 1fτ α β= −
 
Distinguishing from G  the region of stability “in 
large”. The value of *τ  in (28) can be found from 

, where .            . **( , , ) 1f τ α β = ** 1a τ< <
Let us show, that the boundary (28)  that we will 

designate as  is non-attainable. It means that in 
any neighborhood of this boundary, there are 
bifurcation boundaries corresponding to the 
appearance of the point mapping  fixed points. 
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10 τ= Τ , 
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point mapping properties 0
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Let us look for the condition of existance of the 
reverse mappings 0

1( )n τ−Τ  with the values τ  in the 
range ** 0

1( , )τ τ . As the function τ  is monotonous 
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Let us mark 0(0)n
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−Τ = . From this definition it 

follows, that ** 0 0
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Using equations (29) and the A, B, C conditions 

it will be shown that the following lemma is 
correct. 
Lemma. If  0

1(0) , 1n nτ −Τ = ≥ , then 
 

 
0 0

0
0

( ) ,

0,1,..., 1, 0

n
i i

i n

τ τ

τ

Τ =

= − =
 (30) 

 
Consequence. The condition 0

1(0) nτ −Τ =  defines on 
the parameter plane a bifurcation boundary that 
corresponds to appearance of n fixed points  

0 , 0,1,..., 1i i nτ τ= = −  for point mapping ( )n τΤ , 
that is the cycle of n-divisible points of the mapping 
τΤ .       
The bifurcation curve, corresponding to the 

appearance of the n fixed points of mapping ( )n τΤ  
in the parameter plane we will designate as . The 
equation of this curve is 

nΓ

 
 0

1 (0, , ) 1n fτ α β− = −  (31) 
 
Comparing the bifurcation curves  with the 
curve 

nΓ

*Γ , we prove the lemma. 
The following useful theorem can also be 
formulated.  

Theorem. For each 0ε >  there exists an integer 
N, such that for all n>N  the bifurcation curves in 
the parameter ,α β  plane are located in ε -
neighborhood of *Γ . 
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