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Abstract. An Extended Kalman filter (EKF) is designed 
to estimate the parameters of the electro-mechanical 
actuator (EMA). If the measurements are not reliable 
because of any kind of malfunction in the estimation 
system, the filter gives inaccurate results and diverges by 
time. For the presence of measurement faults, a 
Nonlinear Robust Adaptive EKF with the filter gain 
correction based on the evaluation of the posterior 
probability of the normal operation of system, given for 
current measurement is proposed. This probability is 
proposed to calculate via the posterior probability 
density of the normalized innovation sequence at the 
current estimation step. In the proposed filtration 
algorithm, the filter gain is corrected by multiplying with 
the mentioned posterior probability, which plays the role 
of the weight coefficients to the innovation vector. As a 
result, faults in the estimation system are corrected by 
the system, without affecting  the  good  estimation  
behavior. The developed Nonlinear Robust Adaptive 
EKF is applied for the parameter identification process 
of an EMA. The performance of the proposed filter is 
tested for the different types of measurement faults; 
instantaneous abnormal measurements, continuous bias 
at measurements, measurement noise increment and fault 
of zero output.   
Kerwords: Electro-Mechanical actuator, Extended 
Kalman filter, Robust Kalman Filtering, Measurement 
Faults, Parameter Identification.  
   
 

1. Introduction 
 

Electro-mechanical actuators (EMAs) are widely 
utilized in marine and aerospace  applications. Actuators 
are safety-critical components of motion control systems 
and an actuator failure can lead to serious consequences. 
However, EMAs still lack of the knowledge for the other 
actuator types, particularly with regard to fault detection 
and fault tolerant control.  
      For EMAs monitoring and control, parameter 
estimation based approach can be used [1,2]. When there 
are sufficient measurements, necessary EMA parameters 
can be estimated via a Kalman Filter. That is a desired 

procedure since it is important to know the parameters of 
actuator precisely. When these parameters of the actuator 
are obtained without any problem, actuator control can 
be achieved successfully. On the other hand, that is a 
dependent process to the accuracy of the measurements. 
If the measurements are not reliable because of any kind 
of malfunction in the estimation system, the filter gives 
inaccurate results and diverges by time. Since achieving 
fault tolerance in the design of a control system is 
important, filter should be built robustly in order to 
overrun such problems. 
      The Kalman filter approach to the state estimation is 
quite sensitive to any measurement malfunctions 
(abnormal measurements, sudden shifts in the 
measurement channel, and other difficulties such as 
decrease of instrument accuracy, an increase of 
background noise, etc.). If the condition of the operation 
of the measurement system does not correspond to the 
models, used in the synthesis of the filter, then these 
changes resulting from some possible failures at the 
measurement channels significantly decrease the 
effectiveness of the estimation systems. When dealing 
with the measurement faults in previous estimation steps, 
rather than the current one, Adaptive Kalman Filters can 
be used so as to recover the possible malfunctions.  
      KF can be made adaptive and hence insensitive to 
the priori measurements or system uncertainties by using 
various different techniques. The basic approaches to the 
adaptive Kalman filtering problem are Multiple-model-
based adaptive estimation (MMAE) [3,4], Innovation-
based adaptive estimation (IAE) [5,6], and Residual-
based adaptive estimation (RAE) [7]. While in the first 
approach bank of Kalman filters run in parallel under 
different models for the filter’s statistical information, in 
the rest the adaptation is done directly to the covariance 
matrices of the measurement and/or system noises based 
on the changes in the innovation or residual sequences. 
      In methods described in [3,4], the faults are assumed 
to be known, and the Kalman filters are designed for the 
known sensor/actuator faults. As the MMAE approach 
requires several parallel Kalman filters, and the faults 
should be known, it can be used in limited applications. 
Estimation of the covariance matrices by IAE and RAE 
requires the usage of the innovation vectors or residual 



 
 

vectors of m epoch. This increases the storage burden 
and presents the determination of the width of the 
moving window m as another problem. Furthermore, 
IAE and RAE estimators require that the number, type 
and distribution of the measurements for all epochs 
within a window should be consistent. If they do not, the 
covariance matrices of the measurement noises cannot 
be estimated based on the innovation or the residual 
vectors.  
      Another concept is to scale noise covariance matrix 
by multiplying it with a time dependent variable. One of 
the methods for constructing such algorithm is to use an 
adaptive factor as a multiplier to the process or 
measurement noise covariance matrices [8,9]. This 
algorithm, which may be named as Adaptive Fading 
Kalman Filter (AFKF), can be both used when the 
information about the dynamic process or the priori 
measurements is absent. However, when the point at 
issue is the current measurements, another technique to 
scale measurement noise covariance matrix and make 
filter robust (insensitive to measurement faults) should 
be proposed. Therefore, if there is a malfunction in the 
measurement system, Robust Kalman Filter (RKF) 
algorithm can be utilized and by the use of a 
measurement noise scale factor (MNSF) as a multiplier 
on the measurement noise covariance matrix 
insensitiveness of the filter to the current measurement 
faults can be satisfied.  As a consequence, via a 
correction applied to the filter gain, good estimation 
behaviour of the filter will be secured without being 
affected from faulty measurements [10].   
     A new Nonlinear Robust Adaptive EKF with the 
filter gain correction at the each estimation step based on 
the evaluation of the posterior probability of the normal 
operation of system, given for current measurement is 
presented in this study. This approach does not require a 
priori statistical characteristics of the faults and 
knowledge of historical information. Furthermore the 
computational burden is not heavy. The EMAs 
parameter identification based on the developed 
Nonlinear Robust Adaptive EKF is performed.  
      
 

2. EKF for EMAs Parameter Estimation 

      Based on  the measurements of the input and output 
coordinates of the electro-mechanical actuator, 
estimation of the actuator states and parameters will be  
performed. The electro-mechanical actuator is stationary 
and defined by the differential equation below [11]:  
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       Eq.(1) is transformed to discrete form to calculate 
the predicted values of the y coordinate, T and K 
parameters: 
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       The following condition is valid since the electro-
mechanical actuator is stationary. 

)1()( −= kKkK , )1()( −= kTkT              (3)                            

When the measurement equation is concerned, it can be 
expressed as: 

)()()( kkykz δ+= ,  ),0(~)( 2σδ Nk    (4) 

where )(kδ  is the normal Gaussian noise with zero 
average and variance σ2. The predicted values of 

)(),(),(),( kTkKkykx  are calculated according to the a 
prior data in )1( −k th step.         
      The extended vector [ ])()()()( kTkKkykU T =  is 
formed and by using stationary conditions, expanding 
Eq.(2)  into Taylor series we can write: 
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The estimate vector U can be evaluated by means of the 
Kalman filter as: 

       Estimation equation: 

ˆ ˆ( ) ( 1) ( ) ( )U k f U k K k k⎡ ⎤= − + Δ⎣ ⎦                (6)                       

       Innovation: 
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       Gain matrix of the  filter: 
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       Covariance matrix  of  the estimation  error:
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        Covariance matrix of the extrapolation error:                  
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where, [ ]001=H  is  the  measurement 

vector, 2)( σ=kDy  is the variance of the measurement 

error of the actuator output coordinate, )(kDx is the 
variance of the input signal, I is the identity matrix. 
 



 
 

3. Robust Adaptive EKF for  Parameter    
Identification of EMA 

     In normal operation conditions, where any kind of 
measurement malfunction is not observed, EKF (6)-(10) 
gives sufficiently good estimation results. However, 
when the measurements are faulty because of 
malfunctions in the estimation system such as abnormal 
measurements, sudden shifts or step-like changes in the 
measurement channel etc. filter estimation outputs 
become inaccurate. Therefore, a robust adaptive EKF 
algorithm, which brings the fault tolerance to the filter 
and secures accurate estimation results in case of faulty 
measurements without affecting the remaining good 
estimation characteristic, should be introduced. 
     In case of the abrupt faults in the estimation system 
such as computer malfunctions, abnormal measurements, 
step-like changes in the measurement channel, 
measurement noise increment, fault of zero output etc., 
the following suboptimal filter algorithm is proposed:   

   
ˆ ˆ( ) ( 1) (1/ ) ( ) ( )U k f U k p k K k k⎡ ⎤= − + Δ⎣ ⎦           

 (11)                                                                    

Here, p(1/k), is the posterior probability of the normal 
operation of the estimation system, given for 
measurement result at the kth time step. The other filter 
parameters are the same as the expressions (6)-(10). 
When p(1/k)=1, this filter will be exactly same with the 
EKF, but when p(1/k)=0 it disregards the new 
measurements, acting as an extrapolator. 
       During normal operation of the measurement 
channel, )(~ kΔ  normalized innovation sequence  of EKF 
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will satisfy the normal distribution  N(0,1) [11].  

     Two hypotheses are assumed: 

 Ho :  )(~ kΔ ∈Ω ,  fault free 

 Hı  : )(~ kΔ ∉Ω ,  with fault                           (13) 
                                                                                                                          

where  Ω is the allowable domain (confidence interval in 
the one dimensional case) for the normalized innovation 
sequence  ( )kΔ% . 
       The a prior probability of the normal operation of 
system is calculated by the formula 

∫
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where  )~(Δf  is the probability density of the parameter 

Δ~ . In the investigated case the prior probability density 
of the normalized innovation sequence  Δ~  can be 
written as 
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Than the  prior probability of normal operation of system 
is calculated by the  formula 
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where  th±Δ%  are the  threshold values  (confidence 
interval). It is clear that the inequality 

                      ( thp −Δ% < Δ~ 0)th p≤ Δ =%  

is true. The threshold value  thΔ%  for given 0p  is 
determined from the table of probability density  of 
standardized normal distribution.                                                
       The posterior probability density of the parameter  

( )kΔ%  at the  estimation  step  k  is 
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It is proposed to calculate the posterior probability of the 
normal operation of system  (1 / )p k , given for z( k )  
measurement via the  posterior probability density of the 
normalized innovation sequence  Δ~   by the following 
formula 
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The calculation  of  probabilities  0p  and (1 / )p k is 
explained in the Figure 1. 

 

Figure 1. Graphs for calculation  of  the posterior probability )/1( kp  
 



 
 

Consequently the robust adaptive filtration algorithm 
with  the  filter gain matrix correction can be presented 
in the form below  
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where  (1 / )p k  is the  posterior probability of the normal 
operation of system, given  for measurement result at the 
estimation step  k. The rest  parameters in the above filter 
correspond to the same meaning as in EKF (6)-(10). 
       If the fault probability changes, then the gain 
coefficient of the filter is automatically changed. Using 
(18) in Kalman filter (19), gives the filter ability to adapt 
to change in operating conditions. If there is a fault in the 
measurement channel, the value (1 / )p k decreases, 
consequently, the gain coefficient of filter decreases too. 
As a result, the correction effect of innovation sequence 
decreases. Differing from EKF, the current 
measurements have a considerable weight in the 
proposed algorithm, since the elements of gain matrix 

( )K k  are corrected  on each measurement result. 
       The correction value (1 / )p k depends on the 

innovation value ˆ( ) ( ) ( ) ( 1)k z k H k f U k⎡ ⎤Δ = − −⎣ ⎦ ; when 

there is no divergence in the innovation process (the 
system operates normally), then 
( ) ˆ( ) ( 1)z k H k f U k⎡ ⎤≈ −⎣ ⎦ , (1 / ) 1p k →  and its effect is 

insignificant. In this case the filter operates as the EKF. 
If there is a divergence in the innovation (the system 
operates faulty), than the correction value (1 / ) 0p k →  
and decreases the correction of prediction considerably. 
However, in all cases it becomes nonlinear filter, 
because of the dependence of )/1( kp  and consequently  

                          ( ) ( ) ( )=AK k p 1 / k K k                  (20)                                                

to the current measurement z( k ) , where ( )AK k  is the 
gain matrix of the Nonlinear Robust Adaptive EKF (19).      
      Let us remark that if the gain matrix of the proposed 
Kalman filter changes according to (20), the accuracy of 
estimation value in the case of normal operation of the 
system in comparison to the theoretical accuracy 
decreases a little, because of regarded (1 / )p k . 

Therefore the proposed Nonlinear Robust Adaptive EKF 
in this study is not optimal.    
     Therefore, robust adaptive algorithm is operated only 
when the measurements are faulty and in all other cases 
procedure is run optimally with regular EKF (6)-(10). 
Process is controlled by the use of a kind of statistical 
information. To detect failures a statistical function may 
be defined as, 
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     This statistical function has 2χ distribution with 
n degree of freedom where n  is the dimension of the 
state vector. If the level of significance, α , is selected 
as,   
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4. Simulations 

     During simulations, for testing proposed Nonlinear 
Robust Adaptive EKF algorithm, different kinds of 
measurement malfunction scenarios are taken into 
consideration; instantaneous abnormal measurements, 
continuous bias, measurement noise increment, fault of 
zero output.  Besides, in case of measurement faults, the 
simulations are also achieved for conventional EKF so as 
to compare results with RAEKF algorithms and 
understand efficiency of the robust EKF  in a better way.  

 The initial values and data below are used in the 
simulation: T(0) = 2, K(0) = 1, y(0) = 0.001, initial 
values of EKF: T̂ (0)=3, K̂ (0)=1.5, ŷ (0)=0.01, the 
initial value of the covariance matrix of  the  estimation  
error: the variance of input signal, and the variance of 
measurement error are assumed to be   Dx = 0.0001 and 
Dy = 0.001 respectively. The input signal is x = 0.5sin(t). 
The actual values of T, K, and y that form the 
mathematical model of the EMA  are calculated  for 400 
steps  with  iteration  time  4 s. The simulation of the 
measurements is carried out for  400 steps by adding 
noise of variance 0.001 to the output of the actuator y. 
The actuator parameters )(),(),( kTkKky  are estimated 
using the conventional EKF and the proposed RAEKF. 

i)  Continuous Bias at Measurements 

     Continuous bias term is formed by adding a constant 
term to the measurement in between 2 and 2.5 seconds. 
As Figures 2-3 shows, in this case Nonlinear RAEKF 
gives sufficiently good estimation outputs.  



 
 

 
Fig.2. Actual (dashed line) and estimated (solid line) values of  
parameter T; Actual (dash and dotted line) and estimated (solid line) 
values  of parameter K in case of continuous bias at measurements 
(RAEKF is used) 

Fig. 3. Actual (dashed line ) and estimated (solid line) values of 
parameter y  in case of  continuous bias at measurements (RAEKF is 
used) 

 
Fig.4. Behavior of the posterior probability values (1 / )p k  in case of 

continuous bias at measurements 

The posterior probability values of normal operation of 
the estimation system (1/ )p k , given for the 
measurement result at the kth time step are presented in 
Fig. 4. As it is seen from the graphs, in the failure 
condition case (between 2 and 2.5 seconds) probability  

(1 / )p k  close to zero; as a result, the filter become 
insensitive to the introduced continuous bias. Part of the 
EKF simulation results in case of continuous bias at the 
measurements is shown in Appendix A (Figs. A.1, A.2). 
The presented figures show that, in the presence of 
continuous bias at the measurements, the estimation 
results of conventional EKF are not reliable.  
 

ii) Measurement Noise Increment 

     In that third measurement malfunction scenario, 
measurement fault is characterized by multiplying the 
variance of the measurement noise with a constant term 
in between 2 and 2.5 seconds. Figures 5-6 show that 
Nonlinear Robust Adaptive EKF algorithm achieves 
estimation of the states accurately. 

 
Fig.5. Actual (dashed line) and estimated (solid line) values of  
parameter T; Actual (dash and dotted  line) and estimated (solid line) 
values  of parameter K in case of measurement noise increment 
(RAEKF is used) 

 

 Fig. 6. Actual (dashed line ) and estimated (solid line) values of 
parameter y  in case of  measurement noise increment (RAEKF is 
used) 



 
 

 

Fig.7. Behavior of the posterior probability values (1/ )p k  in case of   
                           measurement noise increment  

 The posterior probability values (1 / )p k , corresponding 
to this case are presented in Fig. 7. As it is seen from 
graphs presented in Fig.7 , in the measurement noise 
increment case (between 2 and 2.5 seconds) probability 

(1 / )p k  close to zero; as a result, the filter become 
insensitive to the introduced failure . The EKF 
simulation results which correspond to this malfunction 
scenario are considerably bad as it is seen from graphs 
presented in the  Figs. A.3 and A.4 (Appendix A).   

iii) Instantaneous Abnormal Measurements 

     The whole algorithm is exactly the same with the one 
for the conventional EKF conditions, but errors are 
implemented into 100th, 200th, 300th, and 400th iterations. 
These abrupt errors, which represent the failure 
condition at the measurement channel, are formed by 
multiplying the variance of the measurement noise with 
a constant term. In the simulation of the EMA, system 
equipped with the EKF and Nonlinear Robust Adaptive 
EKF. The resulting data are given in Figures 8-9.  

 

 
Fig.8. Actual (dashed line) and estimated (solid line) values of  
parameter T; Actual (dash and dotted  line) and  estimated (solid line) 
values  of parameter K in case of instantaneous abnormal 
measurements (RAEKF is used) 

 
Fig. 9. Actual (dashed line ) and estimated (solid line) values of   
parameter y  in case of  instantaneous abnormal measurements  

(RAEKF is used) 
 
Figures 8 and 9 show that Nonlinear Robust Adaptive 
EKF algorithm achieves estimation of the states 
accurately. The EKF simulation results which 
correspond to this malfunction scenario are considerably 
bad as it is seen from graphs presented in the  Fig. A.5 
and A.6 (Appendix A).   

iv) Fault of zero output  

     In that fourth measurement malfunction scenario, it is 
assumed the EMA related sensor gives “0” as the output. 
Fault is simply simulated by taking output measurement 
as “0” for the filter algorithm in between 2 and 2.5 
seconds.  The simulation results for this case are given in 
Figures 10 and 11.  

 
Fig.10. Actual (dashed line) and estimated (solid line) values of  
parameter T; Actual (dash and dotted line) and estimated (solid line) 
values of parameter K in case of fault of zero output (RAEKF is used) 



 
 

 
Fig. 11. Actual (dashed line ) and estimated (solid line) values of 
parameter y  in case of  fault of zero output  (RAEKF is used) 
 
As it is seen, the results obtained by Nonlinear Robust 
Adaptive EKF are sufficiently good in case of fault of 
zero output of EMA. The simulation results show that, in 
case of zero output of EMA, the EKF estimation results, 
which are similar to the results in Fig. A.1-A.6, are not 
reliable.  

      5.  Conclusion And Discussion 

     A new Nonlinear Robust Adaptive EKF algorithm 
with the filter gain correction at the each estimation step 
based on the evaluation of the posterior probability of 
the normal operation of the system, given for the current 
measurement is proposed. In the proposed filtration 
algorithm, this probability plays the role of the weight 
coefficients to the innovation vector. The faulty 
measurements are taken into consideration with small 
weights and the proposed EKF compensates the faulty 
results by decreasing the gain coefficients of the filter. 
As a result, measurement faults in the estimation system 
are corrected by the system, without affecting the good 
estimation behaviour.  This approach does not require a 
priori statistical characteristics of the faults and 
knowledge of historical information. Furthermore the 
computational burden is not heavy.  

        Proposed RAEKF algorithm is tested in the case of 
EMA sensor faults, and results are compared with the 
outputs of conventional EKF for the same case.  

      During simulations, for testing the Nonlinear Robust 
Adaptive KF algorithm, four kinds of measurement 
malfunction scenario are taken into consideration; 
instantaneous abnormal measurements, continuous bias, 
measurement noise increment and fault of zero output.   
In the simulations two filtration algorithms are 
performed and are comprised: conventional EKF and 
Nonlinear Robust Adaptive EKF. In the case of healthy 
operation of the system the accuracy of EKF is slightly 
better than Nonlinear Robust Adaptive EKF, but the 
simulation results show that, the EKF becomes faulty 
while the introduced RAEKF algorithm stands robust to 
the measurement faults. The proposed approach does not 

require a priori statistical characteristics of the faults and 
can be used for both linear and nonlinear systems. 
Furthermore the presented RAEKF algorithm is simple 
for practical implementation.  
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APPENDIX A: Conventional EKF Estimation 
Results  

 
 

 
Fig.A.1. Actual (dashed line ) and estimated (solid line) values of 
parameter T; Actual  (dash and dotted line) and  estimated (solid line) 
values of parameter K in case of continuous bias at measurements 
(EKF is used) 

 
Fig. A.2. Actual (dashed line ) and estimated (solid line) values of 
parameter y  in case of   continuous bias at measurements (EKF is 
used) 

 
 
Fig.A.3. Actual  and estimated  values of parameters T and K in case of 
measurement noise increment  (EKF is used) 

 
 
 
 

 

          Fig. A.4. Actual  and estimated values of parameter y  
             in case of  measurement noise increment (EKF is used) 
 
 

 

 Fig.A.5. Actual  and estimated  values of parameters T and  K in   
case of instantaneous abnormal measurements (EKF is used) 

 
 

       Fig. A.6. Actual  and estimated  values of parameter y  in case of    
instantaneous abnormal measurements (EKF is used) 


