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Abstract
This paper provides stability analysis results for a lin-

ear mechanical system with a large parameter at the
vector of gyroscopic forces and with delay in posi-
tional forces. Both cases of discrete and distributed
delay are studied. Using the decomposition method
and Lyapunov–Krasovskii functionals, conditions are
found under which delay does not disturb the asymp-
totic stability of the considered system. The effective-
ness of the obtained results is illustrated by a simulation
example.
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1 Introduction
The basic approach to the analysis of dynamics of

complex and network systems is the decomposition
method [Bullo, Cortes and Martinez, 2009; Frolov,
Koronovskii, Makarov, Maksimenko, Goremyko and
Hramov, 2017; Lakshmikantham, Leela and Mar-
tynyuk, 1989; Matrosov, 2001; Proskurnikov and
Granichin, 2018; Siljak, 1991; Zubov, 1970]. The
method is effectively used in various forms for the in-
vestigation of mechanical systems, see, for instance,
[Andrievsky and Boikov, 2017; Alyshev, Dudarenko
and Melnikov, 2018; Matrosov, 2001; Merkin, 1974]
and the bibliography therein.
In [Zubov, 1970] and [Merkin, 1974], original ap-

proaches to the decomposition of linear time-invariant
mechanical systems with a large parameter at the vec-
tors of velocity and gyroscopic forces, respectively,
have been proposed. The results of [Zubov, 1970] and

[Merkin, 1974] permit us to reduce the stability prob-
lem for a considered second order system to that for
two independent first order subsystems.
These approaches have got further development in

[Kosov, 2005; Aleksandrov, Chen, Kosov and Zhang,
2011; Aleksandrov, Kosov and Chen, 2011; Aleksan-
drov and Aleksandrova, 2016], and new stability con-
ditions were obtained not only for linear time-invariant
systems, but also for systems with nonlinear and non-
stationary force fields.
In [Kuptsov, 2000; Aleksandrov, Aleksandrova and

Zhabko, 2014], such approaches were applied to the
stability analysis of linear gyroscopic systems with a
large parameter at the vector of gyroscopic forces and
with delay in positional forces. It was proved that if
auxiliary first order delay-free subsystems are asymp-
totically stable, then, for sufficiently large values of
the parameter, one can guarantee asymptotic stability
of an original second order time-delay system. How-
ever, it should be noted that the results of [Kuptsov,
2000; Aleksandrov, Aleksandrova and Zhabko, 2014]
are delay-dependent. At the same time, in numerous
applications, delay-independent stability conditions are
required, see [Gu, Kharitonov and Chen, 2003].
In this paper, we propose another approach to the jus-

tification of possibility of decomposition for linear gy-
roscopic systems with time delay that permits to derive
delay-independent stability conditions. In addition, we
will show that the approach can be used for the stabil-
ity investigation of gyroscopic systems with distributed
delay, as well.

2 Statement of the Problem
Let motions of a mechanical system be described by

the equations

Aẍ(t)+(B+hG)ẋ(t)+Cx(t)+Dx(t−τ) = 0. (1)
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Here x(t), ẋ(t) ∈ Rn are vectors of generalized coor-
dinates and velocities, respectively; A,B,G,C,D are
constant matrices; h is a positive parameter; τ is a con-
stant nonnegative delay.
We assume that matrices A and B are symmetric

and positive definite, and matrix G is skew-symmetric.
Thus, the considered mechanical system is influenced
by the dissipative forces −Bẋ(t), gyroscopic forces
−hGẋ(t) and positional forces −Cx(t)−Dx(t− τ).
Equations of the form (1) are widely used as linear

approximations of models of gyroscopic systems (see
[Merkin, 1974; Zubov, 1970]). As examples of such
models, a gyrovertic with radial correction and force
gyroscopic horizon with delay in feedback laws may
be considered [Merkin, 1974]. In these systems, the
parameter h can be treated as a frequency of a gyro-
scope rotation.
Let initial functions for solutions of (1) belong to the

space C1([−τ, 0],Rn) of continuously differentiable
functions φ(θ) : [−τ, 0] → Rn with the uniform norm

∥φ∥τ = max
θ∈[−τ,0]

(∥φ(θ)∥+ ∥φ̇(θ)∥) .

Here ∥·∥ denotes the Euclidean norm of a vector. Let xt

stand for the restriction of a solution x(t) of (1) to the
segment [t− τ, t], i.e., xt : θ → x(t+ θ), θ ∈ [−τ, 0].
In what follows we assume that n is an even number

and detG ̸= 0.
We will look for asymptotic stability conditions for

the system (1).
In [Kuptsov, 2000; Aleksandrov, Aleksandrova and

Zhabko, 2014] it was proved that if the auxiliary delay-
free subsystem

Gẏ(t) + (C +D)y(t) = 0 (2)

is asymptotically stable, then, for every τ ≥ 0, there
exists h0 > 0 such that the system (1) is asymptoti-
cally stable for any h ≥ h0. To derive such a result, in
[Kuptsov, 2000], the first Lyapunov method was used,
whereas, in [Aleksandrov, Aleksandrova and Zhabko,
2014], the Lyapunov direct method and the Razu-
mikhin approach were applied. However, it should be
noted that lower bounds for admissible values of pa-
rameter h obtained in [Kuptsov, 2000] and [Aleksan-
drov, Aleksandrova and Zhabko, 2014] depend on the
magnitude of delay.
In the present paper, we will use another approach to

the stability analysis of the system (1) that permits us
to derive delay-independent asymptotic stability con-
ditions. The approach is based on the decomposi-
tion method and a special construction of Lyapunov–
Krasovskii functional for (1).
In addition, we will show that with the aid of the

approach, sufficient conditions of asymptotic stability

can be obtained for linear gyroscopic systems with dis-
tributed delay.

3 A System with Discrete Delay
Instead of (2), construct the auxiliary time-delay sub-

system

hGẏ(t) + Cy(t) +Dy(t− τ) = 0. (3)

Denote M = −G−1C, N = −G−1D.

Theorem 1. Assume that there exist constant symmet-
ric positive definite matrices P and Q such that the ma-
trix

(
M⊤P + PM +Q PN

N⊤P −Q

)

is negative definite. Then one can choose a number
h0 > 0 such that if h ≥ h0, then the system (1) is
asymptotically stable for any nonnegative delay τ .

Proof. Let

y(t) = x(t)+(B+hG)−1Aẋ(t), z(t) = ẋ(t). (4)

The substitution (4) transforms (1) to the system

ẏ(t) = 1
hMy(t) + 1

hNy(t− τ)

+ 1
h (B + hG)−1BG−1(Cy(t) +Dy(t− τ))

+(B + hG)−1C(B + hG)−1Az(t)

+(B + hG)−1D(B + hG)−1Az(t− τ),

Aż(t) = −(B + hG)z(t)− Cy(t)

+C(B + hG)−1Az(t)−Dy(t− τ)

+D(B + hG)−1Az(t− τ).

(5)

The system (5) can be treated as a complex system
describing interaction of the subsystem (3) and the sub-
system

Aż(t) = −(B + hG)z(t). (6)

It is known [Gu, Kharitonov and Chen, 2003], that,
under the conditions of Theorem 1, the subsystem (3) is
asymptotically stable for any τ ≥ 0, and a Lyapunov–
Krasovskii functional for (3) can be chosen in the form

V1(yt) = hy⊤(t)Py(t) +

t∫
t−τ

y⊤(s)Qy(s)ds. (7)



14 CYBERNETICS AND PHYSICS, VOL. 8, NO. 1

Moreover, the subsystem (6) is asymptotically stable
and admits the Lyapunov function

V2(z) =
1

2
z⊤Az. (8)

Let

V (yt, zt) = V1(yt) +
1

h
V2(z(t)) +

λ

h

t∫
t−τ

∥z(s)∥2ds,

where λ is a positive parameter, and V1(yt), V2(z) are
defined by the formulae (7) and (8), respectively. Then

a1

(
h∥y(t)∥2 + 1

h
∥z(t)∥2

)
≤ V (yt, zt)

≤ a2

(
h∥y(t)∥2 + 1

h
∥z(t)∥2

+

t∫
t−τ

∥y(s)∥2ds+ λ

h

t∫
t−τ

∥z(s)∥2ds

)
,

V̇
∣∣
(5)

= 2y⊤(t)PMy(t) + 2y⊤(t)PNy(t− τ)

+y⊤(t)Qy(t)− 2y⊤(t− τ)Qy(t− τ)

− 1

h
z⊤(t)Bz(t) +

λ

h
∥z(t)∥2 − λ

h
∥z(t− τ)∥2

+2y⊤(t)P (B + hG)−1

(
BG−1Cy(t)

+BG−1Dy(t− τ)) + hC(B + hG)−1Az(t)

+hD(B + hG)−1Az(t− τ)

)

+
1

h
z⊤(t)

(
−Cy(t) + C(B + hG)−1Az(t)

−Dy(t− τ) +D(B + hG)−1Az(t− τ)

)

≤ −a3
(
∥y(t)∥2 + ∥y(t− τ)∥2

)
− 1

h
(a4 − λ)∥z(t)∥2

+
a5∥y(t)∥

h

(
∥y(t)∥+∥y(t−τ)∥+∥z(t)∥+∥z(t−τ)∥

)

+
a6∥z(t)∥

h

(
∥y(t)∥+ ∥y(t− τ)∥+ 1

h
∥z(t)∥

+
1

h
∥z(t− τ)∥

)
− λ

h
∥z(t− τ)∥2.

Here a1, a2, a3, a4, a5, a6 are positive constants inde-
pendent of h, λ and τ .
Let λ = 1/

√
h. Then there exists h0 > 0 such that

V̇
∣∣
(5)

≤ −a3
2

(
∥y(t)∥2 + ∥y(t− τ)∥2

)

− a4
2h

∥z(t)∥2 − λ

2h
∥z(t− τ)∥2

for h ≥ h0. Hence [Gu, Kharitonov and Chen, 2003],
the system (5) is asymptotically stable for h ≥ h0

and for any value of delay. Then, from the properties
of the transformation (4), it follows delay-independent
asymptotic stability of (1). This completes the proof.

4 A System with Distributed Delay
Next, consider the system with distributed delay

Aẍ(t) + (B + hG)ẋ(t) + Cx(t)

+D
t∫

t−τ

x(s)ds = 0.
(9)

Here all notations are the same as for (1).
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It is worth noting that systems with distributed delays
arise in traffic flow models, in network control sys-
tems, in PID controller design and in other engineering
applications [Bullo, Cortes and Martinez, 2009; Gu,
Kharitonov and Chen, 2003; Fridman, 2014; Solomon
and Fridman, 2013]. Some conditions of stability and
stabilization of mechanical systems with distributed de-
lays were obtained, for instance, in [Anan’evskii and
Kolmanovskii, 1989; Pavlikov, 2007].
Let us show that the approach proposed in the previ-

ous section can be used for the stability analysis of the
system (9), as well.
In this case, we consider the following auxiliary sub-

system:

hGẏ(t) + Cy(t) +D

t∫
t−τ

y(s)ds = 0. (10)

Denote M = −G−1C, N = −G−1D.

Theorem 2. Assume that, for a given τ ≥ 0, there exist
constant symmetric positive definite matrices P and Q
such that the matrix

(
1
τ (M

⊤P + PM) +Q PN
N⊤P −Q

)

is negative definite. Then one can choose a number
h0 > 0 such that if h ≥ h0, then the system (9) is
asymptotically stable.

Proof. Using the substitution (4), we arrive at the sys-
tem

ẏ(t) = 1
hMy(t) + 1

hNy(t− τ)

+ 1
h (B + hG)−1BG−1Cy(t)

+ 1
h (B + hG)−1BG−1D

t∫
t−τ

y(s)ds

+(B + hG)−1C(B + hG)−1Az(t)

+(B + hG)−1D(B + hG)−1A
t∫

t−τ

z(s)ds,

Aż(t) = −(B + hG)z(t)− Cy(t)

+C(B + hG)−1Az(t)−D
t∫

t−τ

y(s)ds

+D(B + hG)−1A
t∫

t−τ

z(s)ds.

(11)

From the conditions of Theorem 2 it follows (see [Gu,
Kharitonov and Chen, 2003; Fridman, 2014]) that the
subsystem (10) is asymptotically stable and admits the

Lyapunov–Krasovskii functional

Ṽ1(yt) = hy⊤(t)Py(t)

+

0∫
−τ

t∫
t+θ

y⊤(s)Qy(s)dsdθ.
(12)

Choose a candidate Lyapunov–Krasovskii functional
for (11) in the form

Ṽ (yt, zt) = Ṽ1(yt) +
1

h
V2(z(t))

+
λ

h

t∫
t−τ

(s+ τ − t)∥z(s)∥2ds,

where λ is a positive parameter, and Ṽ1(yt), V2(z) are
defined by the formulae (12) and (8), respectively.
We obtain

a1

(
h∥y(t)∥2 + 1

h
∥z(t)∥2

)
≤ Ṽ (yt, zt)

≤ a2

(
h∥y(t)∥2 + 1

h
∥z(t)∥2

+

0∫
−τ

t∫
t+θ

∥y(s)∥2ds+ λ

h

t∫
t−τ

∥z(s)∥2ds

)
,

˙̃
V
∣∣
(11)

≤ −a3

∥y(t)∥2 +
t∫

t−τ

∥y(s)∥2ds



− 1

h
(a4 − λτ)∥z(t)∥2 − λ

h

t∫
t−τ

∥z(s)∥2ds

+
a5∥y(t)∥

h

(
∥y(t)∥+

t∫
t−τ

∥y(s)∥ds

+∥z(t)∥+
t∫

t−τ

∥z(s)∥ds

)



16 CYBERNETICS AND PHYSICS, VOL. 8, NO. 1

+
a6∥z(t)∥

h

(
∥y(t)∥+

t∫
t−τ

∥y(s)∥ds

+
1

h
∥z(t)∥+ 1

h

t∫
t−τ

∥z(s)∥ds

)
.

Here a1, a2, a3, a4, a5, a6 are positive constants inde-
pendent of h and λ.
If λ = 1/

√
h, then the estimate

˙̃
V
∣∣
(11)

≤ −a3
2

∥y(t)∥2 +
t∫

t−τ

∥y(s)∥2ds



− a4
2h

∥z(t)∥2 − λ

2h

t∫
t−τ

∥z(s)∥2ds

holds for sufficiently large values of h. This completes
the proof.

Remark 1. Unlike Theorem 1, Theorem 2 provides us
delay-dependent asymptotic stability conditions.

5 Results of a Numerical Simulation
To illustrate the effectiveness of the obtained results,

consider the system

ẍ(t) +

((
2 1
1 1

)
+ h

(
0 −1
1 0

))
ẋ(t)

+

(
1 −4
2 −1

)
x(t)−

(
0 0
1 2

)
x(t− τ) = 0.

(13)

Here x(t), ẋ(t) ∈ R2; h is a positive parameter; τ is a
nonnegative delay.
Construct the auxiliary subsystem (3) for (13). We

obtain

hẏ(t) =

(
−2 1
1 −4

)
y(t) +

(
1 2
0 0

)
y(t− τ). (14)

With the aid of the results of [Aleksandrov and Ma-
son, 2016], it can be proved that the subsystem (14) ad-
mits a Lyapunov–Krasovskii functional of the form (7).
Hence (see Theorem 1), there exists a number h0 > 0
such that if h ≥ h0, then the system (13) is asymptoti-
cally stable for any nonnegative delay τ .
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Figure 1. The results of simulation for h = 3.3
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Figure 2. The results of simulation for h = 8

For simulation, we choose τ = 10 and x(t) =
(−3, 5)⊤ for t ∈ [−10, 0]. In Figs. 1 and 2 the de-
pendence of ∥x∥ on t is presented.
First, the case is considered where h = 3.3. Figure

1 shows that, for this value of h, the system (13) is
unstable.
Next, we take h = 8 and repeat calculations with the

same delay and initial conditions. Figure 2 demon-
strates the asymptotic stability of the corresponding
system.

6 Conclusion
In this contribution, with the aid of the decomposi-

tion method and special constructions of Lyapunov–
Krasovskii functionals, sufficient conditions of the
asymptotic stability are found for linear gyroscopic
systems with discrete and distributed delays. In is
worth noting that, for the case of discrete delay, these
conditions are delay-independent, whereas, for systems
with distributed delay, admissible values of parameter
h depend on delay.
We outline some suggestions for further research.

First, using the constructed Lyapunov–Krasovskii
functionals, estimates of the convergence rate of so-
lutions can be derived for considered systems. Next,
the developed approaches can be applied to the stabil-
ity analysis of mechanical systems with switched force
fields. In addition, we believe the approaches in this pa-
per can be useful for the study the consensus problem
for multi-agent systems described by double integrators
with communication delays.
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