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Abstract 
This paper considers the use of a controller with additive 
adjustment to achieve system stability when time-varying 
uncertainty influence. Time-varying parameters are piece-wise 
perturbations, which change at arbitrary and unknown times. An 
adaptive controller and adaptor are designed by the 
reference equation and the velocity vector methods. The 
system has state variable derivative feedback that leads to 
two-time scale motions. The stability problem is studied 
with the help of the common Lyapunov function and 
singular perturbation method. A numerical example is 
given. 
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1. Introduction 
 
In this paper we consider a MIMO plant as a system with 
parameter perturbations, which change at arbitrary and 
unknown times. Typical examples of these plants include 
intelligent vehicle highway systems and robotics, 
especially in the supervision and coordination of multiple 
mobile robots [Davrazos and Koussoulas, 2001], 
transmission systems, air conditioning systems. An 
adaptive controller is synthesized by the reference 
equation method, and we get an adaptive algorithm with 
the help of the velocity vector method [Vostrikov and 
Shpilevaya, 2004]. It is shown a new approach to 
synthesis reduces order of the direct adaptive control 
system. This approach is based on some properties of 
parameter perturbations. A full order system has a 
controller with parameters adjustment. If we use the 
proposed approach, the system will have a controller with 
an additive adjustment. The system has the feedback on 
the state variables derivatives, which leads to two-time 
scale motions. The proposed closed-loop system is 
nonlinear, and there are some subsystems with motions 
having different velocities. Therefore, the study of process 
convergence is not a simple problem.  We study the 
system stability by the common Lyapunov function 
[Narendra and Balakrishnan, 1994] and the singular 
perturbation method. A numerical example to indicate the 

effectiveness of the suggested design approach is 
presented.  
 
2. Problem statement  
 
The plant model used in this paper is 

( ) ( ) ( ) ( ) ( ) ( ),lx t A t x t Bu t y t Cx t= + =& ,                   
(1) 

where ,x u  and y  are vectors of state, input  and output 

variables accordingly, , , mx u y R∈ ;  det 0CB ≠ ; the 
system matrix ( )lA t  describes  parameter perturbations 
on a time interval 1l lt t t +< < , lt  is a moment, in which 

the perturbations sharply change; l  is a index, 1,l L= ; 
( ) { ( )}l l ijA t a t= is a matrix with piecewise constituents,  

and ( )l ija t  is a smooth function for 

1l lt t t +< < , 1l l lt t τ+ = + , 0 l ft t t≤ < , 

( )0f l nt t tτ− > > . Here ,l ntτ are active time of lth 

matrix and the transition time conformably; 0 , ft t are the 
initial and the final work time moments. We suppose that 
the smooth function ( )l ija t  can be defined as 

0( ) ( )l ij ij l ija t a a t= + % ,                                  (2) 

where  

( ) 1l ij l ija t ε<% , ( ) 2l ij l ija t ε<&% , slij constε = < ∞     (3)  

for 1,2; , 1,s i j m= = ; 1l lt t t +< < ; 1,l L= . We suppose 

that 0
ija , sijε  for , 1,i j m=  are known or can be 

estimated. According to (2) we have  

( ) ( )( ) ( ) ( ) ( ) ( )0 ,lx t A A t x t Bu t y t Cx t= + + =%& ,      (4) 

where ( ) ( ){ }l l ij
A t a t=% % ; { }0 0

ijA a=  is Hurwitz’s 

matrix, which can characterize the rated duty or 
( )0

1 0A A t= . The control purpose is  

lim 0
t

r y
→∞

− = ,                               (5) 



where r is a constant reference signal. It is necessary to 
synthesize an adaptive controller to ensure (5).  
 
3. Design of control system with additive 
adjustment  
 
In this section we describe an approach to designing of the 
direct adaptive control system having minimal order. We 
write (4) in the following way 

( )( ) ( ) ( )( )0( )l ly t C A A t x t Bu t= + +%&  .            (6) 

According to the perturbation properties (2) we use (6) in 
the next kind 

 ( ) ( )( ) ( )0( ) ,l ly t C A x t Bu t M x t= + +& ,            (7) 

where ( ) ( ) ( ),l lM x t C A t x t= %  is a new perturbation 

which has the velocity depending on  velocities of  ( )lA t%  

and ( )x t  on interval 1l lt t t +≤ ≤ , dim 1lM m= × . We 

have replaced l m mA ×∈ℑ  on 1l mM ×∈ℜ , and have 
reduced number of the perturbations. It is necessary to 
have fast adjustment algorithm to suppress influence of 
these new perturbations. But at the beginning of design 
we get a control law by using reference equation method. 
Let a reference model be described by the equation 

 ( )( )( )m my t C A x t B r∗ ∗ ∗= +& ,                         (8) 

where { }*
ijA a∗ = , { }ijB b∗ ∗=  and { }ijC c∗ ∗=  are 

received according to the given quality performance of the 
transient. Let mx x= , equating right parts (7) and (8) we 
have the control law 

( )1 0( ) lu CB F CA x M−= − − . 

After replacing lM  on MK we get 

( )1 0( ) Mu CB F CA x K−= − − ,               (9) 

where det 0CB ≠ , ( ) ( )( )( , )F x t r C A x t B r∗ ∗ ∗= +  

and dim 1MK m= × .  
An adaptive algorithm is synthesized by the velocity 
vector method [Vostrikov and Shpilevaya, 2004]. For 
modified control plant (7) and the controller (9) an 
adaptive algorithm is  

( )sgnMK F Cx= −Γ −& &    .                  (10) 

Here { } 0idiag γΓ = >  and 
1, 0,sgn( )

1, 0.
aa

a
>⎧= ⎨− <⎩

 

We can see that the controller (9) has an additive 
adjustment (10). In the system (7), (9) and (10) we can 
estimate x&  with the help of the linear low-inertial filter 
[Vostrikov and Shpilevaya, 2005].  
 

4. Stability of System without Linear Low-
Inertial Filter  
 
We consider convergence conditions for system (7), (9) 
and (10). Substituting the control law (9) into (7), we have 

l l My C A x C B r M K∗ ∗ ∗ ∗= + + −& , 

where  

sgnM lK ε= −Γ& , l l M lF Cx K Mε = − = −& . 
Let IγΓ = , where I is the unity matrix. We assume that 
the intervals between consecutive times l  and 1l +  are 
large enough. Let ntτ > , lτ τ>  for  1,l L= . Study 
system stability on the interval 1l lt t t +≤ ≤  for all l  with 
the help of the common Lyapunov function:  

0.5 T
l lV Hε ε= , 0TH H= >  . 

The researched function derivative is equal to 

( )sgnT T
l l l l lV H H Mε ε ε γ ε= = − −& &&  

or   sgnT T
l l l lV H M Hε γ ε ε= − −& & .  

A condition of negative definiteness of the function ( )V&  

is carried out if we choose adaptor gain as 

lγ δ> , 1max ,l l l lt
M t t tδ += ≤ ≤&  .                 (11) 

Using the conditions (3) we can determineγ . 
 
Proposition 1: The system (7), (9) and (10) with 

( ) ( ) ( ),l lM x t C A t x t= %  is asymptotically stable for 

1,l L=  on the interval lτ , ( )0f l nt t tτ− > > , if the 

conditions (3) and (11) are satisfied. 
 
Using Proposition 1 and the theorems given in [Mancilla-
Aguilar, 2000], we can formulate the second proposition 
for 0 ft t t≤ ≤ . 
 
Proposition 2: The asymptotically stable system (7), (9) 
and (10) on lτ , ( )0f l nt t tτ− > >  is locally 

asymptotically stable on 0 , ft t t⎡ ⎤∈⎣ ⎦ , if 

( )0f l nt t tτ− > > , maxγ δ> , where max 1
max ll L

δ δ
≤ ≤

= .  

 
5. Stability of System with Linear Low-
Inertial Filter  
 
Let’s estimate the required output variable derivatives 
with the help of a low-inertia dynamic system such as 

( )1 z lz A y zμ = −& .                                     (12) 



Here mz R∈ is a state vector of the linear low-inertial 
filter, zA is the coefficient matrix ( ( )zA− is Hurwitz’s 

matrix), 1μ is fast time constant; if 1μ →0, then lz y→  
and lz y→ && .  

Replace the vector-function ( )sgn g in adaptive 

algorithm (10) with the vector-function { }iP p= because 
last function is determined at 0ε = [Ambrasino, et al., 
1984],  

( ) ( )sgn g P g≈ , [ ]1 2, ,...,T
mP p p p= ,           (13) 

where i
i

i

gp
g ϕ

=
+

, ϕ =const, 0 1ϕ< ≤ , g F z= − & .  

According to (12) and (13) the adaptive system on the 
interval 1l lt t t +≤ ≤  is described  

( )
( )

1

2 2

,
,

, 1 .

l l M

z l

M

y C A x C B r M K
z A y z
K P g

μ
μ μ γ

∗ ∗ ∗ ∗= + + −
= −

= =

&

&

&

                  (14) 

Let 1 20.1μ μ< , for simplicity and without loss of 
generality, assume 2 1μ = , enter the new time 1t μ τ= , 

and denote  ( )a da dτ′ = ,  1da dt da dμ τ−= . Then 
in return for (14) we have the system equation in the new 
time 

( )
( )

( )

1

1

,
,

.

l l l M

M

z l

y C A x C B r M K
K P g
z A y z

μ
μ ν

∗ ∗ ∗ ∗′ = + + −

′ =
′ = −

 

Decoupling motions and returning to usual time we have 
the subsystem of fast motions:  

( )z lz A y zμ = −& . 

It is stable for the reason that ( )zA− is Hurwitz’s matrix. 
The slow motions subsystem is 

( )
,

,
l l M

M

y C A x C B r M K
K P gγ

∗ ∗ ∗ ∗= + + −
=

&
&  

where lg ε=  . Its asymptotically stable for all ,x y , 

and lM on the time interval 1l lt t t +< <  is the result of  
Proposition 1. Our research has shown that the adaptive 
system (14) for 1 20.1μ μ<  is stable.  

If 1 2μ μ<  and ( ) 0lim 2102,1

=
→

μμ
μ

, then step-by-step 

degeneracy of the system (14) is carried out. In initial 
system it’s possible to allocate three processes proceeding 
with different velocities. The processes in the observer are 
fast processes, therefore in the established regime, lz y= . 

The adaptor processes are velocity-average processes, 
they will be too stable, because lz y= &&  [Vostrikov and 
Shpilevaya, 2005, Shpilevaya, 2008]. The slow processes 
are described twice step-by-step degeneracy system, 
which coincides with the reference model. So, if 

1 2μ μ< , we have stability subsystems.  

Now let μμμ == 21 . The fast motions are described 
following equations ( ,ly const x const= = ) 

( )
( )

,
.

M

z l

K P g
z A y z

μ ν
μ

=
= −

&

&
                               (15) 

If the control plant is stable, the reference model is 
formed depending on own properties of the plant, 
therefore usually rate of change F  is commensurable 
with rate of change ly& . When ,ly const x const= = , we 

have 0ly →&  and can  suppose that 0.F =  Write down 
the system (15) in variables lε  and l ls z y= − ,  

( ), ,
.

l l l

l z l

P s
s A s

με ν ε
μ

=
= −

&

&
                                     (16) 

The stability of the equilibrium state of this system is 
tested by a function 

0.5 0.5T T
l l l lV s s ε ε= + , 

whose first derivative is equal 
1 1

.
T T

l l z lV P s A sμ ε μ− −= − − . 

According to 0T
l z ls A s >  and properties of the function 

P  (13) we have 0T
l Pε >  for all ls and lε , therefore 

0V
.
< . Thus, at 0ls →  we have 0lε → . So the 

equilibrium state of the system (16) with μμμ == 21  is 
stable. The slow motions have reference model dynamics  

ly C A x C B r F∗ ∗ ∗ ∗= + =& , 
this is stable also. 

According to the results of this subsection, Propositions 1 
and 2, we can assert the following. 
Proposition 3: The adaptive system (14) with piecewise 
parameter perturbations (2), (3) is stable on 0 , ft t t⎡ ⎤∈ ⎣ ⎦ , 

if ( )0f l nt t tτ− > > ; 1 2μ μ<  or 1 2μ μ μ= = , and 

maxγ δ> . 

 
Our study has shown that the adaptive system is stable 
with "fast" and "slow" adaptation loops. In the adaptive 
systems with the linear low-inertial filter the small 
parameters must be 21 μμ ≈  or 1 2.μ μ< .  However it’s 
necessary to note, that at 21 μμ ≈  an opportunity of 
adaptor completely are not realized, as during transient 



time of the linear low inertial filter the regulator 
coefficients are formed depending on ls  instead of lε . If 

1 2μ μ<< , the adaptive system becomes sensitive to the 
noise of measurements of the output variables. In 
[Vostrikov and Shpilevaya, 2005] it is shown that a 
variant 1 2μ μ> and ( )

1,2
2 1 0lim

μ
μ μ =  is not acceptable, 

because fast movements do not provide stability of the 
adaptive system.   
 
6. Example  
 
In this section we consider the adaptive control of a plant 
in two work regimes. Its dynamics is  

1 11 1 12 2

2 21 1 22 2 23 3 1

3 31 1 32 2 33 3 2

,
,
,

l l

l l l

l l l

x a x a x
x a x a x a x u
x a x a x a x u

= +⎧
⎪ = + + +⎨
⎪ = + + +⎩

&

&

&

 

1 2y x= , 2 3y x= . 

Denote ( ) 11 1li l im a x+=  . Nominal parameters of the plant 

are 

0
1 0.5 0

2.5 4 0.5
10 3.5 3

A
− −⎡ ⎤

⎢ ⎥= −
⎢ ⎥

− −⎣ ⎦

, 

the first subsystem has parameters 0
1 1.5A A=  and the 

second subsystem parameters are 0
2 2A A= . Here 

1 5l lτ τ τ+= = = . The system outputs must be 
monotonous processes with 3.5nt = and an allowable 
static error: 5se %≤ ; reference inputs are 

( )1 2r t= , ( )2 1r t= . According to these conditions the 

reference dynamics for each output is i i iF y r= − + , 
1 2i ,= . Using the technique given in Section 3, we have 

( ) ( )
0 0

1 21 2 1 3i i i lii iu a y a y y r M+ += − − − + + , 

where ( ) ( )1 21 2 1 2li lil i l iM a y a y m+ += − − −% % . In this case, (9) 

has a following kind: 

( ) ( )
0 0

1 21 2 1 3i i i ii iu a y a y y r k+ += − − − + + , 

the adaptive algorithm is (10). The adaptor gains 
are 1 2 100γ γ= = , the fast time constants are 

1 2 0 01.μ μ= = .  
 
System trajectories look as shown in Figures 1 and 2. We 
can see the adaptive system reveals stability under the 
piecewise parameter perturbations. In this system we can 
influence the transition time by reference model 
parameters and the adaptor gain. Note in this example we 
have dim dimx u>  and 2 1lM ×∈ℜ  for 3 3lA ×∈ℑ . It 
demonstrates that the considered approach of the adaptive 

control design can be extended to a more general case of 
systems with piecewise parameter perturbations. 
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Fig. 1. Output processes 
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Fig. 2.  Control processes 

  

 7. Conclusion 

 
We have developed an adaptive control algorithm for 
plants, which have piecewise parameter perturbations, 
using the velocity vector method. However it may be 
synthesized with the help of the speed-gradient law too 
[Fradkov, 1991]. For stability study we applied the 
techniques developed for switched systems and method 
used for continuous system analysis. There were the 
common Lyapunov function technique and the singular 
perturbation method. In our design approach we use the 
perturbation velocity, and as a result we get the “fast” 
adaptive algorithm. Due to the “fast” adaptor we can 
stabilize the system with the help of one controller with 
additive adjustment loop as opposed to other systems 
where a few controllers are used. It is expected that 
proposed design method can be extended to a more 
general case of plants with piecewise parameter 
perturbations and of plants than considered in Section 2.  
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