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I. INTRODUCTION

Representation of active media by ensembles of coupled excitable and oscillatory elements is very useful method
of analysis because it allows to deeply understand main dynamical processes. As is known this approach goes back
to the model of Wiener and Rosenblueth [7], according to which a medium consists of single elements being in one
of three possible states: excited, refractory or rest. Many useful concepts like phase-locked patterns, synchronization
and spatio-temporal chaos have become popular due to detailed studies of similar nonlinear models [5, 8].

Investigations of such an example of an active medium as cardiac tissue are of significant scientific interest owing
to vital importance of its stability. Real heart cells demonstrate oscillatory properties (can be reset and entrained),
are excitable, have refractory time, during which they do not respond to external stimulation, are heterogeneous
and fatigue (are less excitable following rapid stimulation), and hence the heart can be considered as consisting of
oscillatory and excitable elements.

Some models treat the cardiac tissue as an active conductive system, taking into account oscillatory properties
of heart cells. In this case the cardiac rhythms can be described on the basis of the dynamical system theory (see
e.g. [1–4, 6] and refs. therein).

The rhythm of autonomous biological oscillators can also undergo an external periodic perturbation (e.g. activity
of cells of the AV junction is subjected to sinus rhythm), depending on both the stimulus magnitude and its phase
within the cycle. It is known that when the frequency and the amplitude of the external periodic stimulation are
varied, a diversity of phase diagrams can be established between the stimulus and the self-sustained oscillator (see
e.g. [6]). In some situations the rhythm of the biological oscillator is entrained (or phase-locked) to the external
stimulation so that for each M cycles of the stimulation there are N cycles of the autonomous oscillator rhythm. This
occurs at a fixed phase (or phases) of the stimulus and is called M : N phase-locking or entrainment, which appears
as a time–periodic sequence. In particular, entrainment of 1 : 1, within which rhythms of the oscillator and external
stimulus are matched, is defined as synchronization.

In this work we developed a general simplified model describing a network of oscillatory elements coupled by
their response to internal depolarization of mutual stimulations. Our primary aim was to keep the model as simple
as possible and to introduce a minimal number of parameters. Therefore, in our model the pacemakers are fully
characterized by their intrinsic cycle length T . Their interaction is described by PRCs. At first, we considered two
interacting pacemakers to demonstrate the basic concepts of the model. Then we applied our approach to construct a
pacemaker network model with global coupling. As a next step, this PRC based model of coupled pulse oscillators was
applied to derive an additional, useful for controlling, model of three pacemakers of the cardiac conductive system. Our
further intention was to go on to the next level and represent each pacemaker as an ensemble of interacting oscillatory
elements. Extrapolation of the approach to the one- and two-dimensional matrices (or lattices) of pacemaker cells
allows to construct active media with a set of oscillators coupled to nearest neighbors.
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